

Planck implications for inflation

Invisible Universe TMR network, webinar, 18.06.2013 J. Lesgourgues (EPFL, CERN, LAPTh)

Planck implications for cosmology – J. Lesgourgues

Why is inflation the favored paradigm?

• Fluctuations are correlated on scales that are super-Hubble at decoupling: Sachs-Wolfe plateau in temperature, and even more clear, large first multipoles in TE spectrum (while E-polarisation cannot come from integrated Sachs-Wolfe)

- Peak structure shows that acoustic oscillations are coherent
- Fluctuations seem to be nearly Gaussian, asoin all simple inflationary models
- Peak location shows that early fluctuations are (at least mainly) adiabatic, as in single-field inflation
- At leading order, primordial spectrum close to scale-invariant

21.05.2013

Ont

Need to measure A_s(k) + T/S amplitude at one scale. If not... remaining degeneracy

V

k

 A_{S}

amplitude $\leftrightarrow V^{3/2}/V'$

tilt (1-n_S) \iff (V'/V)² , V"/V

+ next-order corrections

(running of the tilt, ...)

21.05.2013

amplitude $\leftrightarrow V^{1/2}$

tilt $n_T \iff (V'/V)^2$

+ next-order corrections

(running of the tilt, ...)

5

k

A_τ

• Scalar spectrum maps onto CMB temperature spectrum but in non-trivial way:

Scalar spectrum maps onto CMB temperature spectrum but in non-trivial way: lacksquare

planck

Scalar spectrum maps onto CMB temperature spectrum but in non-trivial way: lacksquare

21.05.2013

Planck implications for cosmology – J. Lesgourgues

planck

- Scalar spectrum maps onto CMB temperature spectrum but in non-trivial way
- The same spectrum maps onto CMB E-polarisation

- Scalar spectrum maps onto CMB temperature spectrum but in non-trivial way
- The same spectrum maps onto CMB E-polarisation
- Tensor modes add up to the T and E spectrum. Appear as deficit of small scales versus large scales in T spectrum.

- Scalar spectrum maps onto CMB temperature spectrum but in non-trivial way
- The same spectrum maps onto CMB E-polarisation

21.05.2013

- Tensor modes add up to the T and E spectrum. Appear as deficit of small scales versus large scales in T spectrum.
- Tensors seed B-polarisation spectrum in a distinct way, but B-modes are much more difficult to measure than E-modes because they are smaller even for GUT-scale inflation... still little chance to see them with Planck

Λ CDM with power-law A_s is a good fit

 $n_s = 0.9603 \pm 0.0073$ (68%CL, Planck+WP), Harrison-Zel'dovitch is 5 σ away

n_s< 1 is a robust result

W.,....

Running spectral index not needed

21.05.2013

Planck implications for cosmology – J. Lesgourgues

- We leave for the moment the possibility to constrain features or isocurvature modes
- We focus on single-field inflation, first with a slow-roll prior, then beyond this prior
- With a slow-roll prior, we fit the model Λ CDM + r
 - n_s = 0.9624 ± 0.0075 (68%CL, Planck+WP)
 - r < 0.12 at k_∗ = 0.002 Mpc⁻¹ (95%CL, Planck+WP)
 - So V_{*} < (1.96x10¹⁶ GeV)⁴

Tensors, spectral index and inflation

• Also OK: Hill-top with p=2 or p≥4; also disfavored: inverse power-law

16

planck

Inflationary model comparison

- Consider a few models: monomials, hilltop, natural inflation...
- Simulate them numerically (background evolved till the end of inflation; uncertainity on reheating marginalized out; T and S spectra computed numerically beyond slow-roll)
- Obtain Bayesian confidence limits on their free parameters
- Obtain Bayesian evidence ratio and $\Delta \chi^2_{eff}$ w.r.t ΛCDM (with r=0)

Model	Instantaneous		Restrictive		Permissive	
	entropy generation		entropy generation		entropy generation	
	$\ln[\mathcal{E}/\mathcal{E}_0]$	$\Delta \chi^2_{\rm eff}$	$\ln[\mathcal{E}/\mathcal{E}_0]$	$\Delta \chi^2_{\rm eff}$	$\ln[\mathcal{E}/\mathcal{E}_0]$	$\Delta \chi^2_{\rm eff}$
<i>n</i> = 4	-14.9	25.9	-18.8	27.2	-13.2	17.4
n = 2	-4.7	5.4	-7.3	6.3	-6.2	5.0
n = 1	-4.1	3.3	-5.4	2.8	-4.9	2.1
n = 2/3	-4.7	5.1	-5.2	3.1	-5.2	2.3
Natural	-6.6	5.2	-8.9	5.5	-8.2	5.0
Hilltop	-7.1	6.1	-9.1	7.1	-6.6	2.4

Inflationary model comparison

- Consider a few models: monomials, hilltop, natural inflation...
- Simulate them numerically (background evolved till the end of inflation; uncertainty on reheating marginalized out; T and S spectra computed numerically beyond slow-roll)
- Obtain Bayesian confidence limits on their free parameter
- Obtain Bayesian evidence ratio and $\Delta \chi^2_{eff}$ w.r.t ΛCDM (with r=0)

planck

Inflation potential reconstruction

- Strictly speaking, we probe the inflaton potential only inside the "observable window", and we extrapolate till the end of inflation using theoretical priors or an explicit for of the potential
- Most conservative approach: constrain a parametric form for V(ϕ) in the observable window and make no assumptions on the rest
- Compute spectrum numerically beyond slow-roll
- Result only depends on parametric form. Since observable window is small: may try Taylor expansion at order n=2,3,4

Inflation potential reconstruction

Slow-roll parameters at pivot scale using numerical reconstruction versus 2nd order slow-roll

21.05.2013

Planck implications for cosmology – J. Lesgourgues

Inflation potential reconstruction

"observable window" of the inflaton potential, assuming that it can be Taylor-expanded inside this region at order n = 2, 3, 4 (units of true $m_{\rm P}$)

Primordial spectrum reconstruction

Primordial spectrum reconstruction

Primordial spectrum with parametric features

- Search for: constant oscillation in log(P) versus log(k)
 - localised oscillations from step in inflaton potential (3 extra parameters)
 - exponential cut-off for short inflation

(3 extra parameters)

Planck implications for cosmology – J. Lesgourgues

Primordial spectrum with parametric features

• best fits compared to ΛCDM residuals:

Primordial spectrum with parametric features

• Improvement is not worth the price to pay, Bayesian evidence in favor of power-law:

Model	$-2\Delta \ln \mathcal{L}_{max}$	$\ln B_{0X}$	Parameter	Best fit value
Wiggles	-9.0	1.5	$lpha_{w}$ ω arphi	0.0294 28.90 0.075 π
Step-inflation	-11.7	0.3	$\mathcal{A}_{\rm f} \\ \ln \left(\eta_{\rm f} / \rm{Mpc} \right) \\ \ln x_{\rm d}$	0.102 8.214 4.47
Cutoff	-2.9	0.3	$\ln \left(k_{\rm c} / {\rm Mpc}^{-1} \right) \lambda_{\rm c}$	-8.493 0.474

• But can be checked independently with future polarisation

Inflation with non-canonical kinetic term

- Sound speed $c_s^2 < 1$
- Scalar spectrum modified by different sound speed
- Tensor to scalar ratio affected
- Generates primordial non-gaussianity: f_{NL} usually proportional to $(1-c_s^{-2})$
- Paper investigates constraints on c_s² and on slow-roll parameter under various assumption

Planck implications for cosmology – J. Lesgourgues

• From f_{NL} and from the temperature spectrum: no evidence for $c_s^2 < 1$

planc

- General case: adiabatic mode plus
 - CDM isocurvature
 - Neutrino density
 - Neutrino velocity

21.05.2013

- General case:
 adiabatic mode plus
 - CDM isocurvature
 - Neutrino density
 - Neutrino velocity

New improved bounds.

Planck implications for cosmology – J. Lesgourgues

21.05.2013

- General case:
 - CDM isocurvature
 - Neutrino density
 - Neutrino velocity

New improved bounds.

 $\Delta\chi^2_{eff}$ ~ 4 from large scales:

No clue for isocurvature modes!

• specific case of axion.

Under various assumptions:

21 05 2013

- Inflation takes place after PQ symmetry breaking
- PQ symmetry not restored by quantum or thermal corrections during inflation/reheating
- Axion = CDM after at QCD transition due to misalignment angle

... then uncorrelated adiabatic + CDI modes with n_{iso}≈1

Got no evidence for this situation. Improved bound leading to

$$H_{\text{inf}} \le 0.87 \times 10^7 \text{ GeV} \left(\frac{f_a}{10^{11} \text{ GeV}} \right)^{0.408} (95\% \text{ CL}) .$$

In this scenario.

• specific case of curvaton.

Under various assumptions:

- Light scalar field during inflation, not contributing to background
- Curvaton decays into CDM at a time when it does contribute as a fraction r of total pressure
- ... then fully correlated adiabatic + CDI modes with $n_{iso} = n_{ad}$ and $f_{NL}(r)$

Got no evidence for this situation. Improved bound leading to 0.98 < r < 1

Conclusions

- Paper contains much more information...
- Maximally Boring Universe or Maximally Elegant Model ?
 - [Actually none of them if anomalies are taken seriously !!]
- Potential of improvement for next year's release:
 - From nominal survey to full survey data
 - Polarization

21 05 2013

- Possible improvement of foreground modeling, mask reduction, manoeuvres inclusion
- Likelihoods are released. Under assumption of FL universe: you can immediately run your favorite models with the last versions of CAMB + CosmoMC (<u>www.cosmologist.info</u>) or CLASS + Monte Python (<u>class-code.net</u>) (include numerical modules simulating inflation)

