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Outline

- Strong CP problem
- Strong CP solution: Axions
- Axion Dark matter

- Experimental searches
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The Strong CP problem

HQCD = (—7T,7T)

0 = 0qcp + argdet M, arg det M, ~ O(1)?

Prediction:

d, ~ 1070 ecm
Non Observation:
d, < 2.6 x 1072%% ecm

4—” <'+—; 4—:' 4(—}
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The Strong CP problem: a hint

Consider no quarks

If the rest of the theory is P, T invariant

Minimumat 6 =0 \

but 6 isnot dynamical
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The Strong CP problem: a hint

Ver (0) uncertain here

Consider no quarks

If the rest of the theory is P, T invariant

Minimumat 6 =0 \

but 6 isnot dynamical
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The Strong CP problem: a hint

Lo = %tr {G’;”éaw} (9 |

ST

‘/eff (eeﬂ:)
With quarks, low-energy QCD

U(l)A Is color anomalous
77/ has anomalous gg coupling

can roll down the potential and restore
P, T symmetries!!
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The Strong CP problem: a hint

ST

Lo = %tr {Gﬁj”éaw} (6’ |

‘/eff (eeff)
With quarks, low-energy QCD

U(l)A is color anomalous

77/ has anomalous gg coupling

can ro the potentiaiand restorg
P, T sym rest]

Actually cannot because EW SB
makes M, Mg 7 0 and breaks
explicitly U(1)a givi(u)ng n' mass
of the order of the 7™ mass.
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The Strong CP problem: a hint

Lo = 1 1
V(') = gmuy (' +60f9)° + Sman”
%ff(eeff) \ / R \
With quarks, low-¢ 5 )
mT('
U(l)A is color]  Oeff = em%, I m% ~ (0.020
77/ has anomalou )\

can ro
P, T sym

Actually
makes

/
since 7] can freely roll down the instantonic potential

The effective value of 6’ decreases and

in the limit . — Ovanishes

explicitly UTIJa giving 77 a mass
of the order of the ™ mass.
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Axion as a solution to the strong CP problem

:% wy Ui ¢ _1 2,12
Lo . tr{Ga GaW} (9 fa,> m:m

T

‘/eff (eeff)
Add a new field coupling to gg

Goldstone of ANOTHER U(1)a

usually called Peccei-Quinn symmetry
(') =0
< >/f — _0 | | ( | | |
a % 37 %X T o T T  3gp
4
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Axion couplings/mass (minimal,hadronic model)

2
Vi) = sm?, (n’+¢ﬁ> ¥ 2f2

m
2 fo " f;
i |
f
a=¢—n=" m2 ~ m fw
fa fa
axion = orthogonal to physical 77/ | the axion gets a calculable mass
10° GeV

m, >~ 6 meV

fa
And calculable mixings .
with the neut. ps. mesons couplings to hadrons

a’Nf/fCL \ 6,Ua
S » NN%L%NJB

an fn/fa,
Par0 ™ fﬂo/fa
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Axion couplings/mass

In a general model it depends how U(l)pQ is implemented

- Only axion term is in the anomaly -> hadronic axions (KSVZ2)

- In the original Peccei-Quinn Model & variants, and DFSZ
the axion is a combination of EW Higgs phases
and therefore axions couple at tree level to leptons as well

U ) d A ¢ 7 -
Lyukawa = 1;QLiP1urj + [;QLiP2dr; + I; LLiP2lRj + h.c.

J

0

()Z(l / LUFR [ ' ] r = U9 / (5]

11

b—‘
t\:

(5 T P 8
(pl = plax /vFR [

(

&

However f, ~ UF was very soon ruled out,
the only plausible option becaming f, > vp (INVISIBLE axions)

J
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Axion couplings

Hadronic axions
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Where we are Hewett et al. arXiv:1205.2671

falGeV]
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-Telescope / EBL

SN1987A

e® Globular Clusters (gay)

WD cooling hint - White Dwarfs (gae)
W Solar Neutrino flux (ga,,)

ADMXI :ADMX—II
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Where we are Hewett et al. arXiv:1205.2671
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Axion dark matter: production mechanisms

Non thermally (cold)
i—3Ha+m2(T)a=0

I IIIIIII| I IIIIIII|

[ Illllll

1F

] llllllll ] llllllll ] llllllll
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Axion hot Dark Matter (or Dark Radiation)

Axions are thermally produced in the early universe by a number of processes
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Axion hot Dark Matter (or Dark Radiation)

Axions are thermally produced in the early universe by a number of processes
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Axion hot Dark Matter (or Dark Radiation)

Axions are thermally produced in the early universe by a number of processes

v - I I'mp;  Such small mass axions behave as hot DM,
— X 9 which is not favored by observations.
H fa

q

C(g's)
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Axion hot Dark Matter (or Dark Radiation)

Axions are thermally produced in the early universe by a number of processes

v m/\/\/\§ - I I'mp;  Such small mass axions behave as hot DM,
E XX

f2 which is not favored by observations.
q a —
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Axion hot Dark Matter (or Dark Radiation)

Axions are thermally produced in the early universe by a number of processes

v - I I'mp;  Such small mass axions behave as hot DM,
E X f2 which is not favored by observations.
2 |

q
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Axion hot Dark Matter (or Dark Radiation)

Axions are thermally produced in the early universe by a number of processes

v m/\/\/\§ - I I'mp;  Such small mass axions behave as hot DM,
E XX

f2 which is not favored by observations.
q a ‘

C(g's)

4 )

They should be a subdominant component of DM
Hannestad et al. JCAP 1008

OnDM,a

< 0.03
Oon obe (mg < 0.72eV)
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Axion hot Dark Matter (or Dark Radiation)

Axions are thermally produced in the early universe by a number of processes

v m/\/\/\§ - I I'mp;  Such small mass axions behave as hot DM,
E XX

f2 which is not favored by observations.
q a

C(g's)

4 )

They should be a subdominant component of DM
Hannestad et al. JCAP 1008

OnDM,a

< 0.03
Oon obe (mg < 0.72eV)

(" )

Sub eV axions or ALPs behave as Dark Radiation but N.g < 3.9

(There are however other DR production mechanisms)

Graf and Steffen arXiv:1208.2951,
Takahashi arXiv:1201.4816, Sikivie PRL 108,

\_
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http://arXiv.org/abs/1201.4816v2
http://arXiv.org/abs/1201.4816v2

Axion cold Dark Matter

Axions (and ALPs) are produced non-thermally by three mechanisms

Realighment mechanism Cosmic Strings Domain Walls

(Field space) (Position space)
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Axion cold Dark Matter

Axions (and ALPs) are produced non-thermally by three mechanisms

Realighment mechanism Cosmic Strings Domain Walls

(Field space) (Position space)

1.184
Qobs ( meg )
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Axion cold Dark Matter

Axions (and ALPs) are produced non-thermally by three mechanisms

Realighment mechanism Cosmic Strings Domain Walls
(Field space) (Position space)
(T>QCD) (T<QCD)

1.184
Qobs ( meg )
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Axion cold Dark Matter

Axions (and ALPs) are produced non-thermally by three mechanisms

Realignment mechanism Cosmic Strings
(Field space) (Position space)
(T>QCD)

3T
a = — a =T

2

l {
-
a = —
2
a=~0

1.184
Qobs ( meg )

Tuesday, 27, November,2012

Domain Walls

(T<QCD)



Axion cold Dark Matter

Axions (and ALPs) are produced non-thermally by three mechanisms

Realignment mechanism Cosmic Strings

(Field space) (Position space)

(T>QCD)

3T
a4 = — —a/:ﬂ-
T
- — —
/ 2
a =10

1.184
Qobs ( meg )
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(T<QCD)



Axion cold Dark Matter

Axions (and ALPs) are produced non-thermally by three mechanisms

Realignment mechanism Cosmic Strings
(Field space) (Position space)
(T>QCD)
3T
= S
l \ ——
-
- — —
/O 2
a —

1.184
Qobs ( meg )
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Axion cold Dark Matter

Axions (and ALPs) are produced non-thermally by three mechanisms

Realighment mechanism Cosmic Strings Domain Walls
(Field space) (Position space)
(T>QCD) (T<QCD)
3T
= S
l \ ——
-
- — —
/O 2
a —

/17
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Axion cold Dark Matter

Axions (and ALPs) are produced non-thermally by three mechanisms

Realighment mechanism Cosmic Strings Domain Walls
(Field space) (Position space)
(T>QCD) (T<QCD)
3T
= S
l \ ——
-
- — —
/O 2
a —

)
RSN
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Axion cold Dark Matter

Axions (and ALPs) are produced non-thermally by three mechanisms

Realighment mechanism Cosmic Strings Domain Walls
(Field space) (Position space)
(T>QCD) (T<QCD)
3T
= S
l. ——
-
- — —
/ 2
a=70 a=20

)
R
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Axion cold Dark Matter

Axions (and ALPs) are produced non-thermally by three mechanisms

Realighment mechanism Cosmic Strings Domain Walls
(Field space) (Position space)
(T>QCD) (T<QCD)
-
3T
= S
l.
_— -
- — —
/ 2
a=70 a=20

U g
me%%id
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Axion cold Dark Matter

Axions (and ALPs) are produced non-thermally by three mechanisms

Realighment mechanism Cosmic Strings Domain Walls
(Field space) (Position space)
(T>QCD) (T<QCD)
-
3T
a = — a =T
2
l.
-
a = —
2
a=70 a=20

' (40ueV>1°184 e, Horar
~ Sikivie, Harari et at.

1.184
Qobs ( 400pueV ) Shellard, Davis et at.
\

Kawasaki, Hiramatsu et at

Qa,VR N (40#6\/)1.184

Qobs

Tuesday, 27, November,2012



Understanding the behavior €2, .pm < 1/m,

E.om. i¢+3Ha+ma=..~0
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Understanding the behavior €2, .pm < 1/m,

E.om. i¢+3Ha+ma=..~0
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Understanding the behavior €2, .pm < 1/m,

E.om. i¢+3Ha+ma=..~0

1.0

05F

00F

0.001 0.01 0.1 1 10 100 1000

t[1/mq]

Tuesday, 27, November,2012



Understanding the behavior €2, .pm < 1/m,

comoving axion number conserved

. 1 R 1
po = =(a)° + =mz2a’ > N =P — ot = “m,R3a2
2 My T 9

N 1 ,.,/(R
pa(t()) :maR_S) — im al (R())
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Understanding the behavior €2, .pm < 1/m,

comoving axion number conserved

1. 1 R’ 1
Pa = 5(@)2 - §m3a2 > N = pm — ct. 2ma,Rla1
a = Mg—5 = =MM,a7 | =
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Understanding the behavior €2, .pm < 1/m,

comoving axion number conserved

1. 1 R’ 1
Pa = 5(@)2 - §m3a2 > N = pm — ct. 2ma,Rla1
a = Mg—5 = =MM,a7 | =
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Understanding the behavior €2, .pm < 1/m,

comoving axion number conserved

Lo 1 o5 pa R 1
Pa = §(Cb) +§maa > N = - — ct. 2ma,Rlal
N 1 R

(to) = m,— = —m?

/0 (O) m R8 2m al (R())
(7)) ~ () ~ () ~ () e
Ry 15 v Himp vV MaMpl ¢

alea,

Qa,,(:Dl\/[ X Pa (tO) X V mafc% X mgS/Q
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Understanding the behavior €2, .pm < 1/m,

comoving axion number conserved

. 1 R 1
po = =(a)° + =mz2a’ > N =P — ot = “m,R3a2
2 My T 9

N 1 R
-y~ i ()
(7)) ~(2) ~ () ~ () <"
Ry 15 v Himp vV MaMpl ¢

CLlea faOC]-/ma

Qa,,(:Dl\/[ X Pa (tO) X V mafc% X mgS/Q
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Understanding the behavior €2, .pm < 1/m,

comoving axion number conserved
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Understanding the behavior €2, .pm < 1/m,

comoving axion number conserved

. R’ 1
po = =(a)° + =m2a > N = Pttt 2ma,Rla1
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Why so cold?

E.om. i¢+3Ha+ma=..~0

1.0

05F

00F

0.001 0.01 0.1 1 10 100 1000

t[1/mq]
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Why so cold?

E.om. i+ 3Ha+ (m2+k)a=..~0

1.0

05F

00F

0.001 0.01 0.1 1 10 100 1000

t{1/k
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Why so cold?

E.om. i+3Ha+ (m2+k%)a=..~0

-0.5

0.001 0.01 0.1 1 10 100 1000

t{1/kl
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Axion cold Dark Matter*

If the Peccei-Quinn phase transition happens before inflation ...

Realighment mechanism Cosmic Strings Domain Walls
(Field space) (Position space)
(T>QCD) (T<QCD)
-
3T
a = — a =T
2
l {
-
a = 5
- \/QO/'@
\\J’_ Size of our universe after inflation fits

inside one of these domains
- CSs and DWs are diluted by expansion
- Whole universe has 1 initial value for a
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And they imprint ISOCURVATURE perturbations

109

10 "0}

s 1)Cy/2nm

(4

10 't

10 2
L0*
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T T ‘l
- aaan 1

-~ V'V ]
W |

Adiabatic \d
but this depends on H
| during inflation...
socurvature
.l;(l)z . J
17p // ]
L ©,27/1000 ‘/,»/// /Tensors
16F-———-——- - - -/ A |/ T>Tops
/1] 1/
: /// Isocurvature |
~ - ,///// : !
> 15 ///  fluctuations Tobs
O - 71/100 ///
Q) fFnsasEne FHee e e
= 14 ,H/‘ Current data
S~ [ /) :
E/D _ // «—— Planck 4
S 13F ;10 /A— oL :
T e 7/,7‘/' ““““““““““““““““
//)/z"/ _
12 B / // ]
- n2 /) “
A A T
R / //
l l l / 1 | | )
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log(H;/GeV)

Hamman, Hannestad, Raffelt and Wong JCAP (2009)



Axion energy density today

Mg eV
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Axion energy density today

Mg |eV]
——_ 10> 10 1 107'1072107°107*107>107°

/

cMB
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Axion energy density today

Mg |eV]
—— 102 10 1 107'10721073107410510°

_thermal ,

'f, - L /' ‘

3
102
eV | 10
p 3
Cc11 |
CMB
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Axion energy density today

Mg eV

— 102 10 1 107'107210731074107°107° topological
I defects (SD,KH)

non-th % Jos 106 107 108 10° 1010101 1012 1013
fa |GeV]

e~ T R — e
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Axion energy density today

Mg eV

— 102 10 1 107'107210731074107°107° topological
defects (SD,KH)

realignment + TD (S)

_th £ 74 :
\ hon th 7 Jos 466 107 108 109 101010 1012 10'3
) ey N fCL [GGV]
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Axion energy density today

Mg |eV]
— 102 10 1 107'1072107310741072107 topological
I defects (SD,KH
thermal ' ( )
== sal 3

realignment + TD (S)

homogeneous a-field
realignment

\

LI LT

77/

i povod o vl oo
05 1’6 107 108 10° 10'0 1011 1012 1013
fa |GeV]

( non-th :
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Where we are Hewett et al. arXiv:1205.2671
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Where we are Hewett et al. arXiv:1205.2671

falGeV]
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preinflation PQ

™) Globular Clusters (ga,)
M dilution ...)
WD cooling hint - White Dwarfs (gae)
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Where we are Hewett et al. arXiv:1205.2671

falGeV]
104 108 102 10! 101 10° 10% 107 10° 10° 10* 10° 102

1l |||IIIIII WIIIIII |||IIIIII WIIIIII |||IIIIII WIIIIII |||IIIIII WIIIIII |||IIIIII ‘

preinflation PQ

™) Globular Clusters (ga,)
M dilution ...)
WD cdlllling hint - White Dwarfs (gae)

ADMX AX-II

Il
10°7 10°° 10> 10~* 1073 1072 107! 102 10 10* 10°

myleV]

Tuesday, 27, November,2012



Where we are Hewett et al. arXiv:1205.2671
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Where we are Hewett et al. arXiv:1205.2671

falGeV]
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Experimental searches for Axion Cold Dark Matter

How do you search for particles whose
interactions are suppressed by £, > 107GeV ?
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Experimental searches for Axion Cold Dark Matter

How do you search for particles whose
interactions are suppressed by £, > 107GeV ?

Axions decay Nﬂ o 64 1024 fa 28
-------4-,-% Cogim? 100
)
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Experimental searches for Axion Cold Dark Matter

How do you search for particles whose
interactions are suppressed by £, > 107GeV ?

4 )

Axions decay N\J N 04 - 1024 ( Ja )2 S

-------4-,-% ga. m3 100
doesn’t help..

. P
\_ /
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Experimental searches for Axion Cold Dark Matter

How do you search for particles whose
interactions are suppressed by £, > 107GeV ?

Axions decay > I YN O 2S
-------4---% Cogim? 100
doesn’t help... P

Experimental Tests of the Invisible Axion
Phys.Rev.Lett. 51 (1983) 1415

J

(\J Axion-Photon coherent
conversion in macroscopic
magnetic fields !!

B P. Sikivie

\_
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http://inspirehep.net/record/13732
http://inspirehep.net/record/13732
http://inspirehep.net/record/13732
http://inspirehep.net/record/13732
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HELIOSCOPES

Detect Solar ALPs at earth by means of inverse Primakoff conversion
in a strong magnetic field

Vacuum

\_ Birefringenge
\ /
/,
/

: |
o —-10 .
‘:0 ;  TAXO/ !
o _ppl o T -
S WD cooling hint | ]
e 3 }H: le —
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Laboratory Experiments

Laser shining through walls (LSW)

High Power Low Background
Laser Detector
Needs B-field
2 2
Py — ¢) = 5 X sin® ——
my 4w

A%:PS

Ehret et al. 2010

g-[Gev™']

1074 1073
m¢ [CV]
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Laboratory Experiments

DNt O g

Higt *ﬁ- “?\JL_

Need

A 2JBW
P(7%¢): 9
106 ! - Mg
'i"_‘ ” .-‘.:1‘ :
> | ALP5
O, BMV ~ _
g BFRT Ehret et al. 2010
1077 GammeV ™5
ALPS (gas)
ALPS ¥
1074 1073
my [eV]
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Next Generation of LSW

Hoogeveen 91, Sikivie 2009

Much longer experiments + 2nd resonant cavity
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Matched Fabry-Perots
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Cavity experiments (Haloscopes)
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Cavity experiments (Haloscopes)
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Cavity experiments (Haloscopes)
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Conclusions

- Invite me again to know more about experiments
- Dynamical mechanism to solve Strong CP implies
detectable cold Dark Matter axions

- Different cosmologies/uncertainties
large range of masses to scan
- Powerful but insufficient ongoing experiments

many more are to come!

Tuesday, 27, November,2012



unc

|

LUDWIG
MAXIMILIANS |8
MUNCHEN

Tuesday, 27, November,2012




