Standard and non-standard neutrino properties

Antonio Palazzo

Max-Planck-Institut für Physik (Munich)

Outline

- 1) The path to the discovery of non-zero θ_{13}
- 2) The hints of sterile neutrinos and the Sun
- 3) Solar vs as a probe of the MSW dynamics

Tightly interconnected topics, as we will see ...

The path to the discovery of non-zero θ_{13}

Why a non-zero θ_{13} is so important

$$J = \Im[U_{\mu 3} U_{e 2} U_{\mu 2}^* U_{e 3}^*]$$

The Jarlskog invariant J gives a parameterization-independent measure of the CP violation induced by the complexity of U

In the standard parameterization the expression of J is:

$$J = \frac{1}{8}\sin 2\theta_{12}\sin 2\theta_{23}\sin 2\theta_{13}\cos \theta_{13}\sin \delta$$

Only if all three $\theta_{ij} \neq 0$ we can have CP violation

quark-sector:
$${\bf J}_{\rm CKM} \sim$$
 3 x 10⁻⁵, much smaller than $|J|_{max} = \frac{1}{6\sqrt{3}} \sim 0.1$

lepton-sector: |J| may be as large as 3×10^{-2} (it will depend on δ)

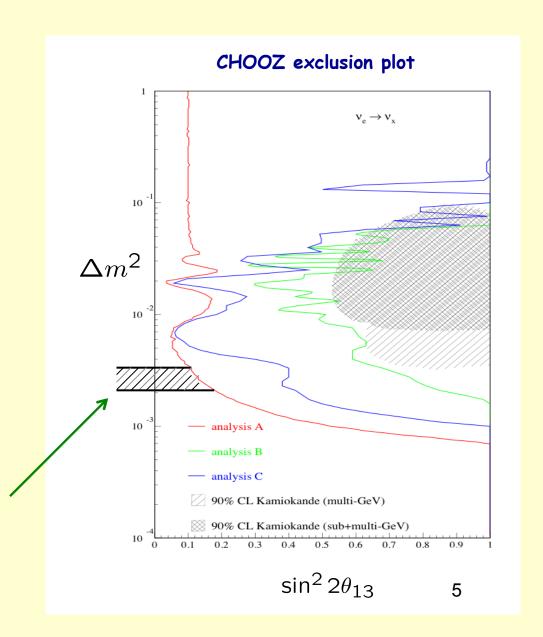
Historical result established by CHOOZ in 1998

$$P_{ee}^{\mathrm{OSC}} = 1 - 4U_{e3}^2 (1 - U_{e3}^2) \sin^2\left(\frac{\Delta m^2}{4E}L\right)$$

$$P_{ee}^{\mathrm{exp}} \simeq 1$$
 $U_{e3}^2 = \sin^2 \theta_{13}$

Exclusion plot in the $(\Delta m^2, \, \theta_{13})$ plane

 Δm^2 scale <u>now</u> Atm set with precision by +LBL



...since then...

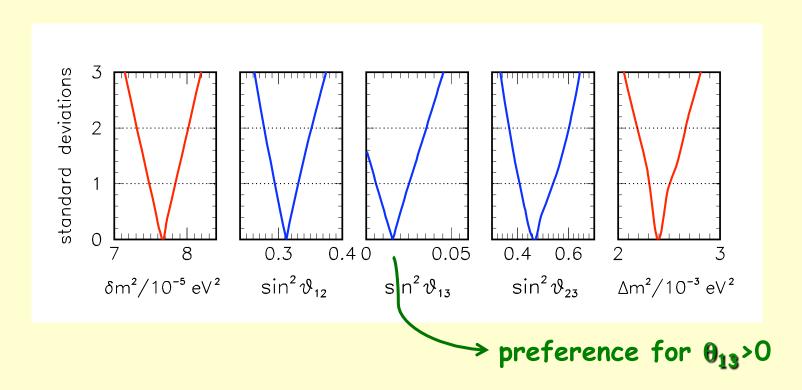
The 3v global analyses have played an increasingly relevant role in pinning down θ_{13} , constantly improving their sensitivity.

They have first corroborated (atm. analyses) and then strengthened (sol+Kam analyses) the CHOOZ upper limit.

Hence, in 2008 it was not surprising that they started to be competitive, reaching values of θ_{13} below the CHOOZ limit.

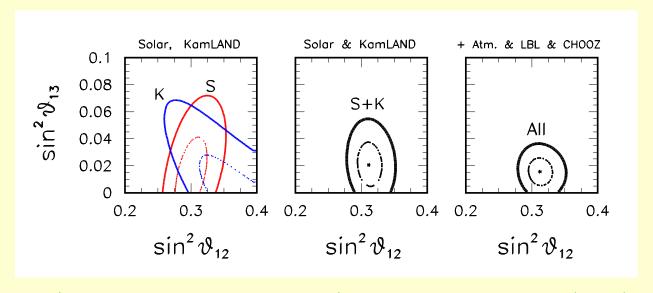
What instead - pleasantly - surprised us was that, for the first time, the analyses pointed towards a non-zero value of this parameter...

2008: Global 3v analysis



The global analysis provided a preference for θ_{13} > 0 at 90% C.L. Fogli, Lisi, Marrone, A.P., Rotunno, PRL 101, 141801 (2008), arXiv:0806.2649, hep-ph.

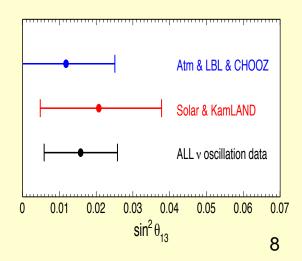
2008: First indication of non-zero θ_{13}



Fogli, Lisi, Marrone, A.P., Rotunno, Phys. Rev. Lett. 101, 141201 (2008)

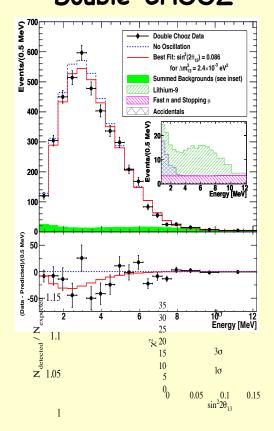
Two independent hints came from solar and atmospheric sectors:

 $\sin^2\theta_{13} \sim 0.016$

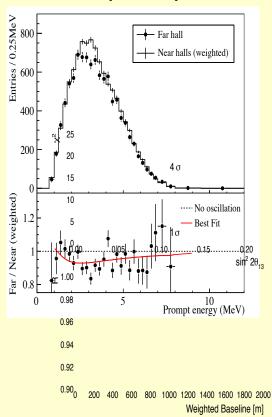


Indication irrefutably confirmed in 2012

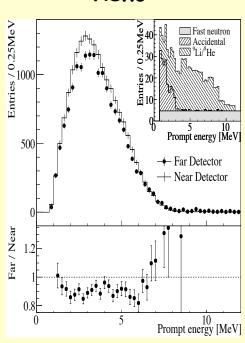
Double-CHOOZ



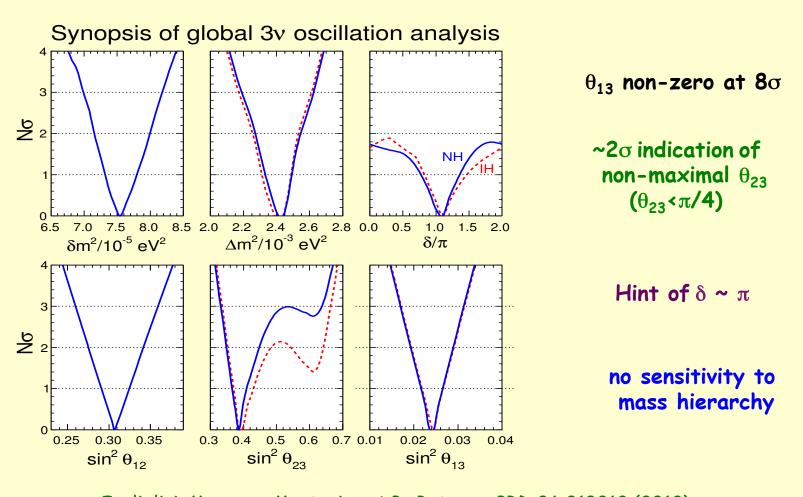
Daya Bay



Reno

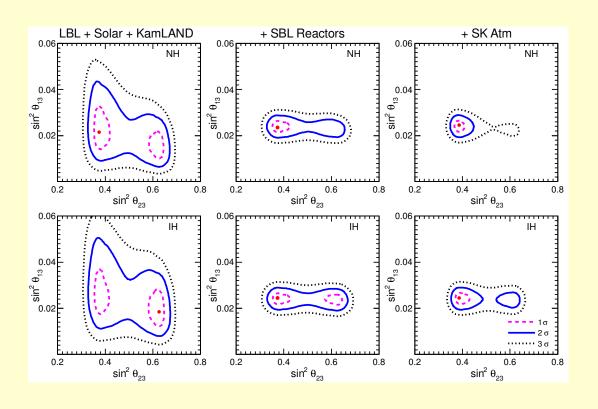


Parameter estimates as of June 2012



Fogli, lisi, Marrone, Montanino, A.P., Rotunno, PRD 86 013012 (2012) (includes Neutrino 2012 results)

How the indication of $\theta_{23} < \pi/4$ emerges



LBL introduce:

- θ_{23} - θ_{13} anticorrelation
- prefer. non-maximal θ_{23}
- weak octant asymmetry

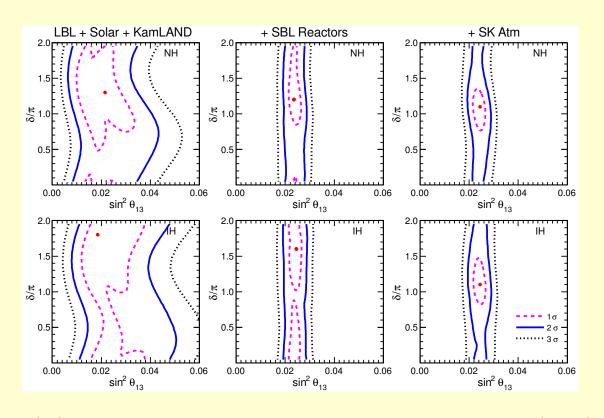
Once reactors fix θ_{13} the octant asymmetry is enhanced

Atm. further enhance octant asymmetry

Global indication of θ_{23} < π /4 emerges

Fogli, lisi, Marrone, Montanino, A.P., Rotunno, PRD 86 013012 (2012) (includes Neutrino 2012 results)

First information about δ



LBL are almost insensitive to δ

Weak sensitivity emerges once reactors fix θ_{13}

Atm. enhance sensitivity

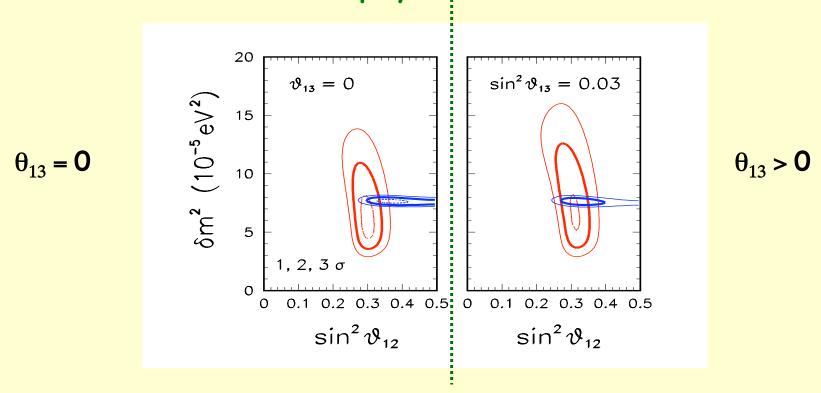
Global hint of $\delta \sim \pi$ emerges

Fogli, lisi, Marrone, Montanino, A.P., Rotunno, PRD 86 013012 (2012) (includes Neutrino 2012 results)

If $\delta \sim \pi$ confirmed it would indicate U ~ real and a small J ... and a long and difficult way towards CPV observation!

But let us come back to the solar hint of $\theta_{13}>0$

A closer look shows that it emerged from a delicate interplay of solar and KamLAND



Solar vs are thus a very precise machine and we can trust it also when searching for non-standard physics!

Beyond the standard 3v paradigm

Exploring new neutrino properties

Why go beyond the standard 3v picture?

Theory

Many extensions of the SM point towards new v properties (interactions, new states,...)

Acquired knowledge

Precision on standard parameters enhances the sensitivity to any kind of perturbation

Experimental hints

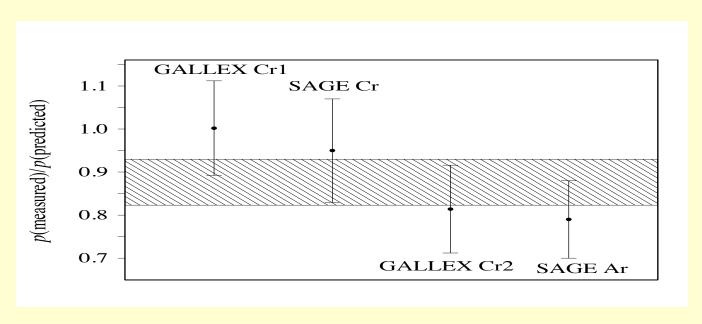
Although the 3v scheme explains most of the data an increasing number of anomalies is showing up

Future data

A rich plan of new experiments will allow us to explore and chart unknown territories

The hints of sterile neutrinos and the Sun

Hint #1: The Gallium calibration anomaly

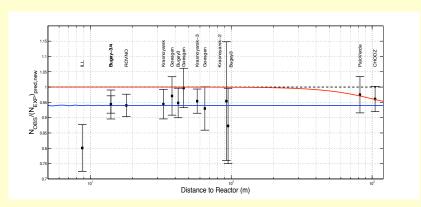


SAGE coll., PRC 73 (2006) 045805

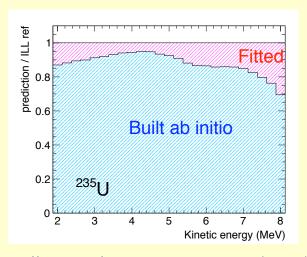
Deficit observed in calibration performed with radioactive sources

But it could be due to overestimate of v_e + $^{71}Ga \rightarrow ^{71}Ge$ + e^- cross section

Hint #2: The reactor antineutrino anomaly



Mention et al., PRD 83 073006 (2011)

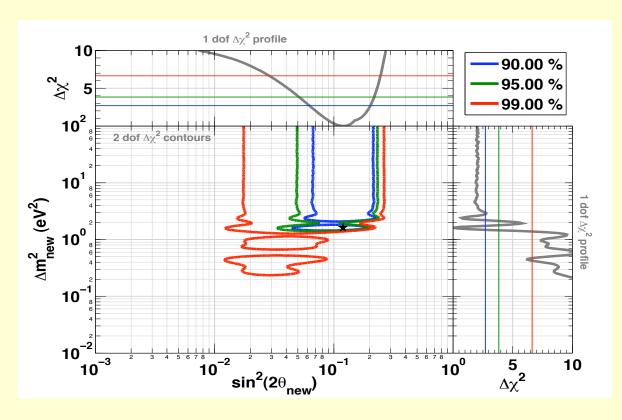


Mueller et al., PRC 83 054615 (2011) Huber, PRC 84 024617 (2011)

With new reactor fluxes deficit of all the short-baseline reactor measurements

But new calculations, like older ones, are still anchored to (one single) β -spectrum experiment (ILL)

Fitting the short-distance v_e -disappearance

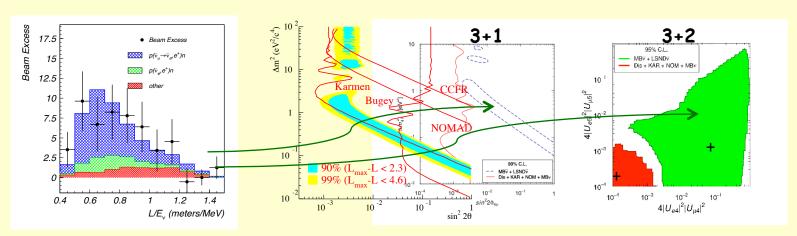


Mention et al., PRD 83 073006 (2011)

$$\sin^2 2\theta_{new} \simeq 0.1$$

$$\Delta m_{new}^2 \gtrsim 1 \text{ eV}^2$$

Hint #3: Anomalous short-distance v_e -appearance



LSND, PRL 75 (1995) 2650

Giunti and Laveder, arXiv:1107.1452

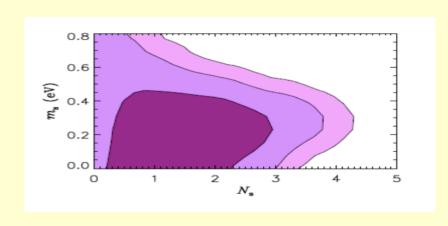
Warning:

In tension with disappearance searches:

 v_{μ} -> v_{e} positive appearance signal incompatible with joint v_{e} -> v_{e} (positive) & v_{μ} -> v_{μ} (negative) searches

Theory:
$$\sin^2 2\theta_{e\mu} \simeq \frac{1}{4} \sin^2 2\theta_{ee} \sin^2 2\theta_{\mu\mu} \simeq 4|U_{e4}|^2 |U_{\mu 4}|^2$$
 Experiments: ~ few % ~ 0.1 < few %

Hint #4: Cosmology favors extra radiation



CMB + LSS tend to prefer extra relativistic content ~ 2 sigma effect

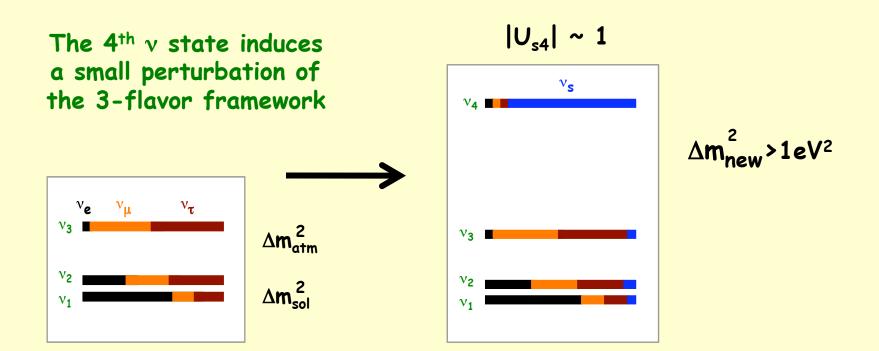
[Hamann et al., PRL 105, 181301 (2010)]

Warnings:

- eV masses acceptable only abandoning standard ΛCDM (Kristiansen & Elgaroy arXiv:1104.0704 , Hamann et al. arXiv:1108.4136)
- N_s>1 at BBN strongly disfavored (Mangano & Serpico PLB 701, 296, 2011)
- N_s is not specific of v_s (new light particles, decay of dark matter particles, quintessence, ...)

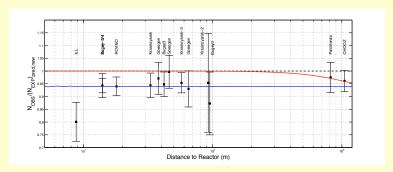
Can we get some information on v_s from the solar neutrino sector?

The 3+1 scheme:

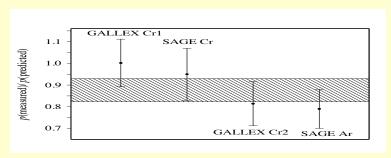


From the "point of view" of the solar doublet (v_1, v_2) we expect similar sensitivity to U_{e3} & U_{e4}

VSBL v_e disappearance in a 3+1 scheme



Mention et al. arXiv:1101:2755 [hep-ex]



SAGE coll., PRC 73 (2006) 045805

In a 2v framework:

$$P_{ee} \simeq 1 - \sin^2 2\theta_{new} \sin^2 \frac{\Delta m_{new}^2 L}{4E}$$

In a 3+1 scheme:

$$P_{ee} = 1 - 4\sum_{j>k} U_{ej}^2 U_{ek}^2 \sin^2 \frac{\Delta m_{jk}^2 L}{4E}$$

$$\Delta m_{sol}^2 \ll \Delta m_{atm}^2 \ll \Delta m_{new}^2$$

$$\sin^2 \theta_{new} \simeq U_{e4}^2 = \sin^2 \theta_{14}$$

3+1 scheme has several consequences: solar, atm, react., accel.

We will focus on the implications for Solar (S) & KamLAND (K)

LBL v_e disappearance in a 3+1 scheme

$$P_{ee} = 1 - 4\sum_{j>k} U_{ej}^2 U_{ek}^2 \sin^2 \frac{\Delta m_{jk}^2 L}{4E}$$

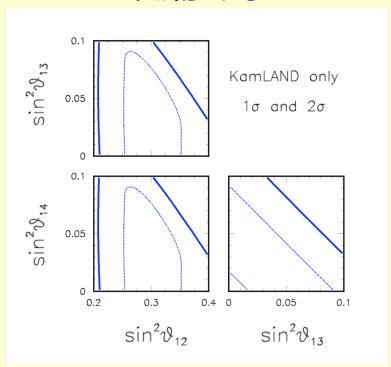
$$\Delta m_{sol}^2 \ll \Delta m_{atm}^2 \ll \Delta m_{new}^2$$

$\frac{\Delta m^2_{atm}}{\Delta m^2_{new}}$ -driven osc. averaged

$$P_{ee} = (1 - U_{e3}^2 - U_{e4}^2)^2 P_{ee}^{2\nu} + U_{e3}^4 + U_{e4}^4$$

$$U_{e3}^2 = c_{14}^2 s_{13}^2 \qquad \qquad U_{e4}^2 = s_{14}^2$$

KamLAND



Exact degeneracy between Ue3 and Ue4

Solar v conversion in a 3+1 scheme

$$i\frac{d}{dx}\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \\ \nu_s \end{pmatrix} = H\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \\ \nu_s \end{pmatrix} \qquad H = UKU^T + V(x)$$

$$K=rac{1}{2E}{
m diag}(k_1,\,k_2,\,k_3,\,k_4)$$
 $k_i=rac{m_i^2}{2E}$ wavenumbers in vacuum

Useful to write the mixing matrix as*: $U = R_{23} S R_{13} R_{12}$ $S = R_{24} R_{34} R_{14}$

$$\theta_{14} = \theta_{24} = \theta_{34} = 0$$
 --> S = I --> 3-flavor case

$$V={
m diag}(V_{CC},~0,~0,~-V_{NC})$$
 MSW potential $V_{CC}=\sqrt{2}\,G_F\,N_e$ $V_{NC}=rac{1}{2}\sqrt{2}\,G_F\,N_n$

^{*} We assume U to be real but in general it can be complex due to CP phases

Change of basis:
$$\nu' = (R_{23} \, S \, R_{13})^T \, \nu = A^T \nu = R_{12} U^T$$

In the new basis:
$$H'=A^THA=R_{12}KR_{12}^T+R_{13}^TS^TVSR_{13}$$

$$rac{V}{k_{atm}}$$
 and $rac{V}{k_{new}}$

At zeroth order in:
$$\frac{V}{k_{atm}} \; \text{ and } \; \frac{V}{k_{new}} \qquad \qquad H' \simeq \begin{pmatrix} H'_{2\nu} \\ \vdots \\ K_3 \\ \vdots \\ K_4 \end{pmatrix}$$

The 3rd & 4th state evolve independently from the 1st & 2nd

The dynamics reduces to that of a 2×2 system

Diagonalization of the Hamiltonian

$$\tilde{R}_{12}^T H_{2\nu}' \tilde{R}_{12} = diag(\tilde{k}_1, \tilde{k}_2)$$

which defines the solar mixing angle in matter

$$\tilde{\theta}_{12}(x)$$

wavenumbers in matter

$$\tilde{k}_i$$

The starting Hamiltonian is then diagonalized by

$$\tilde{U} = A\tilde{R}_{12}$$

$$\tilde{U}^T H \tilde{U} = diag(\tilde{k}_1, \tilde{k}_2, k_3, k_4)$$

For v_3 and v_4 (averaged) vacuum-like propagation

The 2x2 Hamiltonian: $H_{2v}^{i} = H_{2v}^{i \text{ kin}} + H_{2v}^{i \text{ dyn}}$

$$H_{2\nu}^{\prime \rm kin} = \begin{pmatrix} c_{12} & s_{12} \\ -s_{12} & c_{12} \end{pmatrix} \begin{pmatrix} -k_{sol}/2 & 0 \\ 0 & k_{sol}/2 \end{pmatrix} \begin{pmatrix} c_{12} & -s_{12} \\ s_{12} & c_{12} \end{pmatrix} \qquad k_{sol} = \frac{m_2^2 - m_1^2}{2E}$$

$$H_{2\nu}^{\prime \mathrm{dyn}} = V_{CC}(x) \begin{pmatrix} \gamma^2 + r(x) \, \alpha^2 & r(x) \, \alpha\beta \\ r(x) \, \alpha\beta & r(x) \, \beta^2 \end{pmatrix}^{\star} \qquad \text{Formally equivalent to NSI} \tag{see later}$$

$$\begin{cases} \alpha^2 + \beta^2 = U_{s1}^2 + U_{s2}^2 \\ \gamma^2 = 1 - (U_{e3}^2 + U_{e4}^2) \end{cases} \qquad \begin{cases} \alpha = c_{24}c_{34}c_{13}s_{14} - s_{34}s_{13} \\ \beta = s_{24}c_{34} \\ \gamma = c_{13}c_{14} \end{cases} \qquad r(x) = \frac{V_{NC}(x)}{V_{CC}(x)}$$

New MSW dynamical corrections induced by the 4th state are smaller than 1% and too small to be observable (see later).

But important new kinematical effects are present ...

For adiabatic propagation (valid for small deviations around the LMA)

$$P_{ee} = \sum_{i=1}^{4} U_{ei}^{2} \tilde{U}_{ei}^{2} = U_{e1}^{2} \tilde{U}_{e1}^{2} + U_{e2}^{2} \tilde{U}_{e2}^{2} + U_{e3}^{4} + U_{e4}^{4}$$

$$P_{es} = \sum_{i=1}^{4} U_{si}^{2} \tilde{U}_{ei}^{2} = U_{s1}^{2} \tilde{U}_{e1}^{2} + U_{s2}^{2} \tilde{U}_{e2}^{2} + U_{s3}^{2} U_{e3}^{2} + U_{s4}^{2} U_{e4}^{2}$$

Expressions for Uei's (always valid)

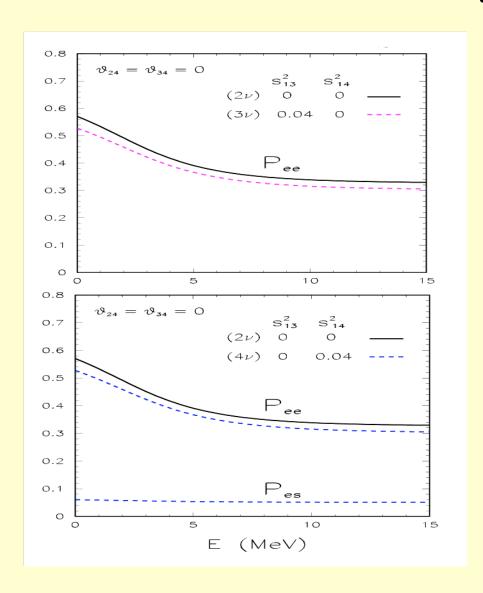
$$\begin{array}{l} U_{e1}^2 = c_{14}^2 c_{13}^2 c_{12}^2 \\ U_{e2}^2 = c_{14}^2 c_{13}^2 s_{12}^2 \\ \end{array} \} \sim 1 - s_{14}^2 - s_{13}^2 \\ U_{e3}^2 = c_{14}^2 s_{13}^2 \sim s_{13}^2 \\ U_{e4}^2 = s_{14}^2 \end{array}$$

Expressions for U_{si} 's valid for $\theta_{24} = \theta_{34} = 0$

$$\begin{array}{l} U_{s1}^2 = s_{14}^2 c_{13}^2 c_{12}^2 \\ U_{s2}^2 = s_{14}^2 c_{13}^2 s_{12}^2 \\ U_{s3}^2 = s_{14}^2 s_{13}^2 \sim 0 \\ U_{s4}^2 = c_{14}^2 c_{13}^2 \sim 1 - s_{14}^2 \end{array}$$

The elements of \widetilde{U} are obtained replacing θ_{12} with $\widehat{\theta}_{12}$ calculated in the production point (near the sun center)

Solar v: Two simple limit cases



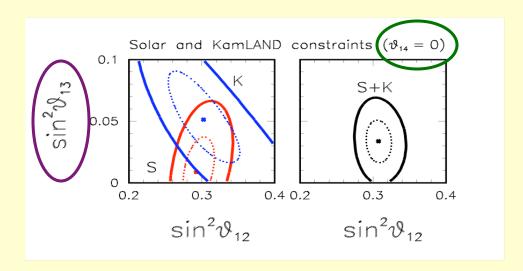
$$\theta_{13} \neq 0 \quad \theta_{14} = 0 \quad (3v)$$

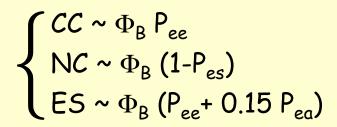
$$\begin{cases} P_{ee} = c_{13}^4 P_{ee}^{2\nu} \Big|_{V \to V c_{13}^2} + s_{13}^4 \\ P_{es} = 0 \end{cases}$$

$$\theta_{13} = 0 \quad \theta_{14} \neq 0 \quad (4v)$$

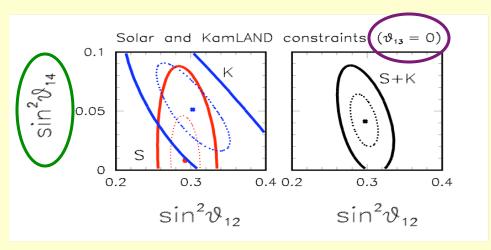
$$\begin{cases} P_{ee} = c_{14}^4 P_{ee}^{2\nu} \Big|_{V \to V c_{14}^2} + s_{14}^4 \\ P_{es} \simeq s_{14}^2 P_{ee}^{2\nu} \Big|_{V \to V c_{14}^2} + s_{14}^2 \end{cases}$$

$(\theta_{13}, \theta_{12})$ vs $(\theta_{14}, \theta_{12})$ constraints





Solar v sensitive to Pes CC/NC (SNO) & ES (SK)

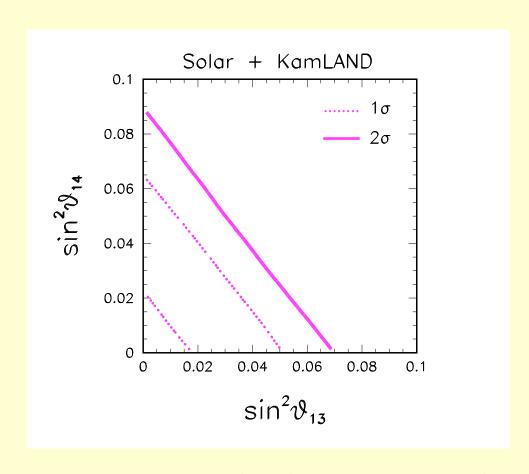


But unfortunately only small differences among 3v and 4v

We expect a degeneracy among θ_{13} and θ_{14}

A.P. PRD 83 113013 (2011) [arXiv: 1105.1705 hep-ph]

$(\theta_{13}, \theta_{14})$ constraints



Complete degeneracy θ_{13} - θ_{14} indistinguishable

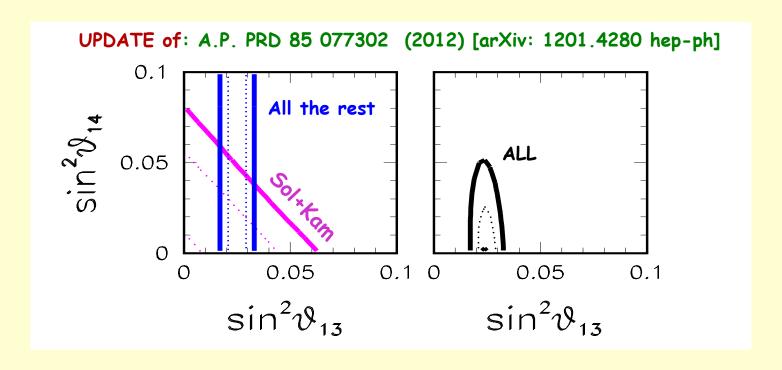
Solar sector essentially sensitive to $\sim U_{e3}^2 + U_{e4}^2$

Hint for v_e mixing with states others than (v_1, v_2)

Different probes are necessary to determine if v_e mixes with v_3 or v_4

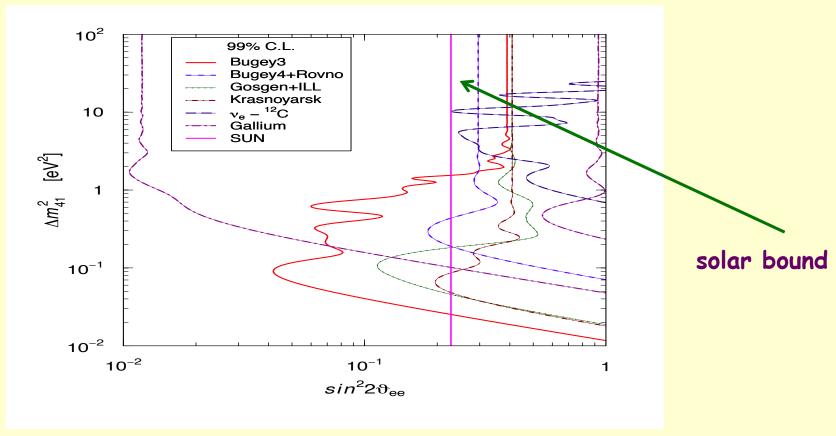
A.P. PRD 83 113013 (2011) [arXiv: 1105.1705 hep-ph]

Evidence of $\theta_{13}>0$ kills preference of $\theta_{14}>0$



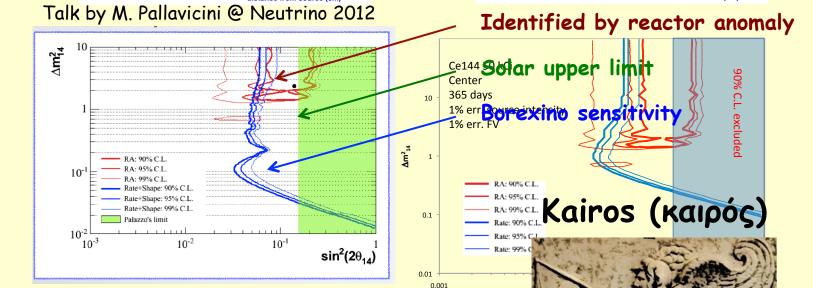
- Upper limit $\longrightarrow \sin^2 \theta_{14} < 0.04 \ (90\% \ C.L.)$
- KamLAND, only spectral shape included: limit is independent of reactor flux estimates
- θ_{13} estimate independent of θ_{14}

Solar bound is the most stringent one for $\Delta m_{14}^2 > 1 eV^2$



Talk by C. Giunti @ vTURN 2012

How to go below the solar upper limit Make use of a v source close to a Borexino-like detector

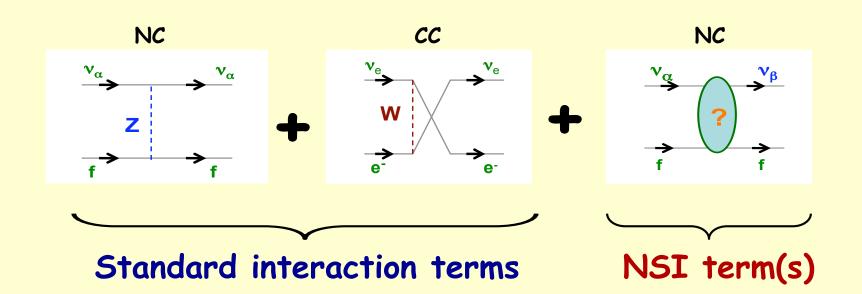


The "Borexino Kairos"

This is the right (and fleeting) moment (kairos) for Borexino to exploit its unique potential!

Solar vs as a probe of non-standard MSW dynamics

Coherent forward scattering in the presence of NSI: pictorial view



NSI described by an effective four-fermions operator

$$O_{\alpha\beta}^{\rm NSI} \sim \overline{\nu}_{\alpha} \nu_{\beta} \overline{f} f$$

$$(\alpha, \beta) = e, \mu, \tau$$

$$f \equiv (e, u, d)$$

Coherent forward scattering in the presence of NSI: math. view

$$i\frac{d}{dx} \left(\begin{array}{c} \nu_e \\ \nu_\mu \\ \nu_\tau \end{array} \right) = H \left(\begin{array}{c} \nu_e \\ \nu_\mu \\ \nu_\tau \end{array} \right)$$

H contains three terms:

$$H = H_{\rm kin} + H_{\rm dyn}^{\rm std} + H_{\rm dyn}^{\rm NSI}$$

$$H_{\rm kin} = U \begin{pmatrix} -\delta k/2 & 0 & 0 \\ 0 & +\delta k/2 & 0 \\ 0 & 0 & k/2 \end{pmatrix} U^{\dagger}$$
 $\delta k = \delta m^2/2E$ $k = m^2/2E$

Standard MSW dynamics

$$H_{\text{dyn}}^{\text{std}} = \text{diag}(V, 0, 0)$$
 $V(x) = \sqrt{2}G_F N_e(x)$

Non-standard dynamics

$$(H_{\rm dyn}^{\rm NSI})_{\alpha\beta} = \sqrt{2} G_F N_f(x) \epsilon_{\alpha\beta}$$

Reduction to an effective two flavor dynamics

One mass scale approximation:

$$\Delta m^2 \to \infty$$

$$P_{ee} = c_{13}^4 P_{ee}^{\text{eff}} + s_{13}^4$$

survival probability

$$i\frac{d}{dx} \left(\begin{array}{c} \nu_e \\ \nu_a \end{array} \right) = H^{\text{eff}} \left(\begin{array}{c} \nu_e \\ \nu_a \end{array} \right)$$

effective evolution

$$H^{\mathrm{eff}} = V(x) \begin{pmatrix} c_{13}^2 & 0 \\ 0 & 0 \end{pmatrix} + \sqrt{2}G_f N_d(x) \begin{pmatrix} 0 & \varepsilon \\ \varepsilon & \varepsilon' \end{pmatrix} \quad \text{formally similar to 4v effects}$$

For $\theta_{13} = 0$:

$$\varepsilon = -\varepsilon_{e\mu}c_{23} - \varepsilon_{e\tau}s_{23}$$

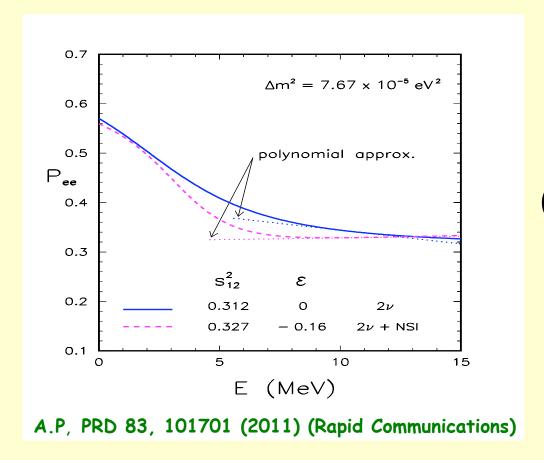
$$\varepsilon' = -2\varepsilon_{\mu\tau} s_{23} c_{23}$$

 $\epsilon_{\mu\tau}$ ~ 0 (strong bounds from atmospheric ν)

Parameter space:

$$[\delta m^2, \theta_{12}, \varepsilon]$$

Impact of NSI on the solar spectrum



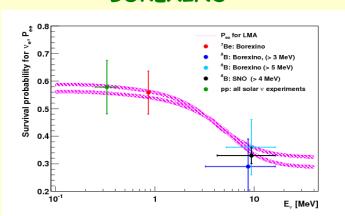
$$\epsilon = -0.16$$
 ($\epsilon_{e\tau} = +0.23$)

for interaction with d-quark

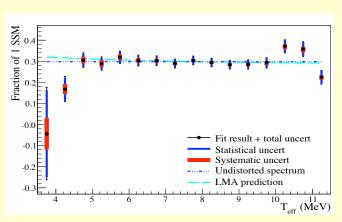
NSI with a size of $\sim 10\%$ are needed to produce appreciable effects: 4v effects induced by sterile neutrinos ($\sim 1\%$) are thus unobservable

NSIs can help to explain the anomalous spectrum behavior

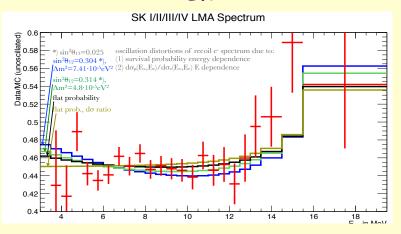
BOREXINO



SNO



SK



Monday, June 4, 12 42

This hypothesis can be tested quantitatively

The response functions of SK, SNO, Borexino are centered around $E_0 = 10$ MeV, where they have maximal sensitivity

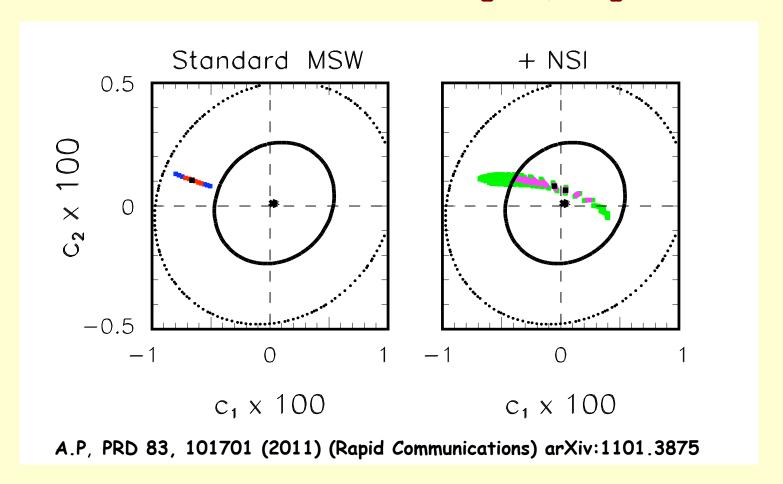
Assuming a regular behavior for the survival probability we can parameterize its high energy behavior as a second order polynomial

$$P_{ee} = c_0 + c_1 (E-E_0) + c_2 (E-E_0)^2$$

It is then possible to:

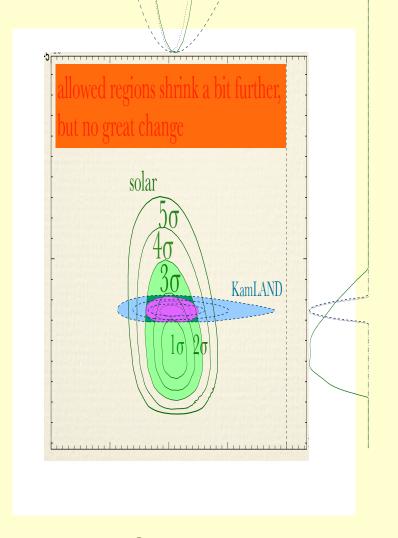
- 1) Extract the coefficients from the combination of all the experiments sensitive to the high-energy neutrinos.
- 2) Check where a given theor. model (standard MSW,+NSI, etc.) "lives" in the space of the coefficients c_i 's.

Constraints on [c1,c2]



NSI gains a $\Delta \chi^2 \sim -2.0$ from better description of the spectrum

NSI can also alleviate tension in δm^2 determinations



 $(10^{-5} eV^2)$ +0.2 10 δm² 1,2 sigma 0.2 0.3 0.1 0.4 0.5 $\sin^2 \vartheta_{12}$

M. Smy @ Neutrino 2012

A.P. and J.W.F. Valle, PRD 80, 091301 (2009)

Summary

- 3v paradigm acquires a new crucial piece: θ_{13} >0
- First interesting information on CPV phase ($\delta \sim \pi$) & $\theta_{23} < \pi/4$
- A few expts. results suggest ν 's mix with new sterile states
- Evidence of θ_{13} >0 + solar sector data provide the stringent and robust upper limit: $U_{e4}^2 < 0.04 \ (90\% \ \rm C.L.)$
- The solar sector data evidence two weak anomalies which can be explained in terms of new neutrino interactions.
- New experiments indispensable to settle the issues.

Thank you for your attention!