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Why Sterile Neutrinos !

Generic extensions of SM
Seesaw mechanism
Baryogenesis via Leptogenesis
Dark Matter (keV)

X-ray lines (keV)

Pulsar kicks (keV)

Neutrino oscillations (eV)



Sterile Neutrinos at |leV
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If one takes the neutrino oscillation anomalies seriously,
one needs | or 2 sterile neutrinos with large mixings



Active - Sterile Oscillations
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N SM singlets mix with ordinary neutrinos and lead to 3 mostly
active (MP)2/(MM) and N mostly sterile (M™) neutrinos



Active-Sterile Oscillations
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Exactly like ordinary neutrino oscillations, but different
parameters, in general.

Sterile neutrinos do not feel any MSWV potentials from
electrons, protons, neutrons etc.



Equivalent (to) Neutrinos

During the radiation dominated epoch in the expanding Universe
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where,
g = no. of states, for bosons
g = 7/8 x no. of states, for fermions
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Often we parametrize new relativistic dofs as if they were neutrinos.Why?
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CMB in a Nutshell
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Oscillations leads to fluctuations in temperature
and polarization of the CMB photons
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What do we measure!?

3
e - e - - - - - - e e e e . = -

WMAP7

PR

PRREE S T S ST T N

T T

Arec
Cs

re X da——
0 @2H

ound 1S the max. size of the waves

soun

0,= rJ/D,

S

500

1000 1500 2000 2500 3000

/

First peak measures the size of the sound horizon
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What do we measure!?
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ry is the photon diffusion length
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High multipoles measure diffusion length of photons in the plasma
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Together they allow us to measure H at the CMB epoch



Why neutrinos?
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Extra radiation increases energy density, and thus the expansion rate

|. Photon density known, from CMB temperature=3K
2. Matter density known, from amplitudes of peaks

So, measuring H = measuring “neutrino” energy density

N.B.: Neutrinos = Any relativistic species except photons



A Blossoming Friendship ...
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After WMAP-7 (+ LSS + small-scale CMB + H-HST) mild preference for extra radiation

“Cosmology seeking friendship with ...”" extra radiation.

Hamann, Hannestad, Raffelt, Tamborrra,VWong (2010)



... Break-Up
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No evidence for extra radiation!

Planck Collaboration (201 3)



Friendship Renewed?
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Planck and BICEP2 values of r come into closer agreement if there is extra radiation.

Giusarma, Valentino, Lattanzi, Melchiorri, Mena (2014, arXiv:1403.4852)



Dark Radiation Candidates

* Many possibilities with good motivations ...

— Thermal QCD axions (Strong CP)
— Hidden Photons (Extra U(I)s, ...)
— Sterile Neutrinos (This talk)



Cosmological Sterile Neutrinos

* Vacuum mixing (Dodelson-Widrow)
— Usual mixing of active-sterile.
— Hot sterile nus.

* Resonant production (Shi-Fuller)

— Steriles produced only via a MSWV resonance that needs a
large lepton asymmetry.

— Cold/Warm sterile nus.



Effective m and N

Often the temperature of the active neutrinos and the sterile neutrinos are
not the same.

Even if sterile neutrinos were in equilibrium at some early temperature, the
decay of SM (or Sterile) sector particles can lead to different temperatures.

Say the two were in thermal equilibrium above ~TeV, then

1/3
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T, =
g« (TeV)

So effective number and energy densities of sterile neutrinos can be different (lower).
But typically oscillations bring them back in equilibrium, and this suppression is absent.



Endangered Sterile Neutrinos
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These bounds are only marginally compatible with a fully ther-

malized sterile neutrino (N.g ~ 4) with sub-eV mass m;?:rrﬂ“éal ~
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< 0.5eV that could explain the oscillation anomalies.  pj, .k Collaboration (2013)



Take Away # I

Strong cosmological bounds on a
well-mixed light sterile neutrino.



Ways to avoid the constraint

Large lepton asymmetry
— Foot and Volkas (1995)

Majorons
— Babu and Rothstein (1992), Bento and Bereziani (2001),

Very low reheating temperature

— Gelmini, Palomarez-Ruiz, Pascoli (2004)

Dilution by decay of exotic heavy particles
— Fuller, Kishimoto, Kusenko (201 I), Ho and Scherrer (2012), ...



Not only avoid the constraint, but
something better

Based on
Dasgupta and Kopp, Phys. Rev. Lett. | 12 (2014)



The Not-So-Sterile Neutrino
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Add to SM a sterile neutrino that has some gauge interaction via a new light
gauge boson A.

Initially sterile and active sectors in equilibrium, and decouple at T > |00 GeV.

1/3
o | 9:(Ty)
Because of energy injection into photons, [ — ) T,y
Leads to extra N_eff ~0.5 by BBN thermally.

What about oscillations?

Hansen, Hannestad, Tram (2014)
Dasgupta and Kopp (2014)



Thermal Masses

Sterile neutrinos acquire a “thermal mass” due to their
interactions with virtual/real gauge bosons which can be
quite large at high-T.

They are not produced by oscillations if this mass
exceeds the active-sterile neutrino oscillation frequency.



Thermal Masses
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Thermal Masses
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Thermal Masses
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Thermal Masses
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Thermal Masses
P
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Usual MSW term.We could assume an asymmetry in sterile neutrinos.



Thermal Masses
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Purely thermal contribution. Exists even with no asymmetry.



Thermal MSWV Potential
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If M < 10 MeV the thermal potential can be large

Dasgupta and Kopp (2014)



MSWV suppression
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No production by oscillations. Also thermalization rate is similarly suppressed.

N is increased by ~0.5 due to sterile neutrinos at BBN (much less at CMB)

Dasgupta and Kopp (2014)



Some Comments

Detailed dynamics should consider MSW
resonances

Adiabaticity effects
Non-forward scattering processes

Sterile neutrino decoupling is slightly earlier
than | MeV due to mixing angle suppression

Tails of the thermal distribution

V <<, so relativistic approximation holds



Full QKE
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Besides oscillations, scattering processes also taken into account.
The scattering rate is

I =C,G%2T”
D = lf .
2

Hansen, Hannestad, Tram (2014)



Fractional dofs from QKE

For ~100 MeV boson
One can easily suppress
N_eff to below 0.5

Hansen, Hannestad, Tram (2014)



Post-BBN Thermalization

Mirizzi, Mangano, Pisanti, Saviano (2014)
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Speaker’s note added: This constraint rules out almost all parameter space except two
regions at M~| MeV and g~107-4 and at M ~ 0.1 MeV with g~0.1 (less obvious).




Comments

Detailed dynamics should consider MSW
resonances

Adiabaticity effects
Non-forward scattering processes

Sterile neutrino decoupling is slightly earlier
than | MeV due to mixing angle suppression

Tails of the thermal distribution

V <<, so relativistic approximation holds



Take Away # 2:
“Gauged”-sterile can avoid the bounds.



Unintended Consequences



Core-vs.-Cusp

Profiles of dwarf spheroidal
galaxies don’t seem to fit with

that predicted by CDM
simulations.

Observed galaxies have cores,
where cusps are predicted.

Moore (1994); Flores and Primack (1994)
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Oh et al. (2010)



Missing Satellites

Via Lactea simulation PAndAS Survey

Factor ~100 fewer MW-satellite galaxies seen

Klypin et al. (1999); Moore et al. (1999)



Too Big to Fail
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How to address these problems?

* Baryonic effects (Reionization, SN Feedback,...,
Tidal stripping...)
— DM core creation + Tidal stripping (TBTF)
— Faint galaxies + Reionization (only MSP)

* Yukawa interactions of DM (can’t solve MSP)

* DM-neutrino interactions (strong constraints)



A DM-Neutrino Connection

L = exXVuXA, + e VsV A,

Assume that the new force couples to DM as well (coupling is taken to be same)

No new parameters are introduced.

Two new processes are automatically expected



Halo Density

A Neutrino-tempered DM

>

. Flattening due to
l "+, self-interactions

>
Distance from Center of Halo

Core-Cusp problem solved
using self-interactions.
TBTF is also solved.

. Power at small-scales
"+, _cut-off by nu-DM interaction

N(>M)

Halo Mass

Missing Satellites solved using DM
interactions with neutrinos, that
leads to late kinetic decoupling

Van den Aarssen, Bringmann, Pfrommer (2012); Dasgupta and Kopp (2014)



Smoothening DM Cusps

Dwarf-sized halos do not have cusps due to DM-DM
interactions mediated by A’.

What one needs is then DM-DM scattering cross
section at the level of 0.1 cm”2 / g for velocities of
dwarf galaxies (10 km/s).

Feng, Kaplinghat, Tu,Yu (2009); Loeb and Weiner (201 1)

This is easily achieved by having a light mediator A’ that
enhances the cross section.



Explaining the Missing Satellites

The sterile neutrino-DM scattering keeps DM in kinetic
equilibrium until somewhat later (T,/m, n, o,,) ~ H

This erases structure at the smallest scales, and the
smallest (dwarf) halos never form.

Boehm, Fayet, Schaeffer (2000); Loeb and Zaldarriaga (2005)

What one needs is then M_cut ~ 1079 solar masses or
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One needs a spin-1 mediator for this to work. Scalars lead to a small effect.




Addressing the TBTF problem

Dwarf-sized subhalos inside MW
do not have cusps due to DM-

DM interactions mediated by A’.

What one needs is then DM-DM
scattering cross section at the
level of 0.1 cm”2 / g for
velocities of dwarf galaxies (10
km/s). This is the same condition
as that for solving the core-cusp
problem.

s gy
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Zavala,Vogelsberger, Loeb (2012)



DM-Neutrino Concordance
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One can explain N4 , Neutrino Oscillations, and All 3 DM problems, simultaneously

Dasgupta and Kopp (2014), see also follow up by Bringmann, Hasenkamp, Kersten (2014)



A Connection to PeV Neutrinos

. High energy v spectra, m, =1 eV
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Can lead to depletion of HE events around a PeV at IceCube

Cherry, Friedland, and Shoemaker (to appear)
Similar ideas in: loka and Murase (2014), Ng and Beacom (2014)



Take Away # 3:
Interesting astrophysical signatures



Summary

|. Strong cosmological bounds on a well-mixed
light sterile neutrino.

2. Minor extensions to sterile neutrinos can avoid
the cosmological bounds on dark radiation.

3. Hidden charged sterile neutrinos can explain DM
behavior at small-scales, etc.



Bonus Material

Based on Chu and Dasgupta, published in PRL (Oct, 2014)



Getting Rid of Neutrinos
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On spontaneous symmetry breaking
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Residual Z2 symmetry ensures . = DM is stable

Also Y] = DR
Weinberg (2013)



DM + DR
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Chu and Dasgupta, 2014 (1404.6127, published in PRL)



Solving Small-Scale Problems
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Dark Radiation Predictions

AN, at BBN AN, at CMB
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Chu and Dasgupta, 2014 (1404.6127, published in PRL)



