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Why Sterile Neutrinos ? 

•  Generic extensions of SM 
•  Seesaw mechanism 
•  Baryogenesis via Leptogenesis 
•  Dark Matter (keV) 
•  X-ray lines (keV) 
•  Pulsar kicks (keV) 
•  Neutrino oscillations (eV) 



Sterile Neutrinos  at 1eV (_ )
ν e appearance in the 3+1 scenario and beyond
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3+1/dof χ2

3+2/dof χ2

1+3+1/dof

LSND 11.0/11 8.6/11 7.5/11

MiniB ν 19.3/11 10.6/11 9.1/11

MiniB ν̄ 10.7/11 9.6/11 12.7/11

E776 32.4/24 29.2/24 31.3/24

KARMEN 9.8/9 8.6/9 9.0/9

NOMAD 0.0/1 0.0/1 0.0/1

ICARUS 2.0/1 2.3/1 1.5/1

Combined 87.9/66 72.7/63 74.6/63

Global fit to all appearance data is consistent

Background oscillations important

in MiniBooNE and E776

Significant improvement in

3 + 2 and 1 + 3 + 1
JK Machado Maltoni Schwetz, 1303.3011

other fits by Giunti Laveder et al.

Conrad Ignarra Karagiorgi Shaevitz Spitz Djurcic Sorel
Joachim Kopp, MPIK Sterile neutrinos on Earth and in the skies 11

3 + 1 3 + 2 1 + 3 + 1

Global fit to all appearance data 
is consistent, and 3+2 or 1+3+1 
models are better fits than 3 
only or 3+1. 

Machado, Kopp, Maltoni, Schwetz (2013) 

+ similar results by  
Palazzo;  
Giunti, Laveder, et al;  
Conrad et al., … 

If one takes the neutrino oscillation anomalies seriously,  
one needs 1 or 2 sterile neutrinos with large mixings 



Active - Sterile Oscillations 

N SM singlets mix with ordinary neutrinos and lead to 3 mostly 
active (MD)2/(MM) and N mostly sterile (MM) neutrinos 

Lν−mass = −Mij

2
νciνj + h.c.

Mij =




03×3 MD

3×N

. . . MM
N×N



where, 

Mdiag
ij =




MDM−1

M MT
D 0

0 MM



which diagonalizes to 



Active-Sterile Oscillations 
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Exactly like ordinary neutrino oscillations, but different 
parameters, in general. 

Sterile neutrinos do not feel any MSW potentials from 
electrons, protons, neutrons etc. 



Equivalent (to) Neutrinos 

During the radiation dominated epoch in the expanding Universe 

where,  
g = no. of states, for bosons 
g = 7/8 x no. of states, for fermions  

Often we parametrize new relativistic dofs as if they were neutrinos. Why? 
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CMB in a Nutshell 

Oscillations leads to fluctuations in temperature  
and polarization of the CMB photons 

Gravity Pulls + Radiation Pressure Pushes 
= 

Primordial Plasma Oscillates 



What do we measure?  

θs 

rs ∝
� arec

0
da

cs

a2H

rsound is the max. size of the waves. 
θs =  rs/DA 
 

First peak measures the size of the sound horizon 



What do we measure?  

1/rsound 

rs ∝
� arec

0
da

cs

a2H

rd is the photon diffusion length 
θd =  rd/DA 

r
2
d ∝

� arec

0
da

1

a3HneσT

Decay ~ exp(- θd
2 l 2 ) 

High multipoles measure diffusion length of photons in the plasma 



What do we measure?  

1/rsound 

rs ∝
� arec

0
da

cs

a2H
Slope ~ -1/rd

2 

1/rsound 
rd ∝ 1√

H

rs ∝
1

H

rd

rs
∝

√
H

Together they allow us to measure H at the CMB epoch 



Why neutrinos? 

Extra radiation increases energy density, and thus the expansion rate 

�
ȧ

a

�2

≡ H
2 ∝ (ργ + ρmat + ρν)

1. Photon density known, from CMB temperature=3K 
2. Matter density known, from amplitudes of peaks 
 
So, measuring H = measuring “neutrino” energy density 

N.B.: Neutrinos = Any relativistic species except photons 



A Blossoming Friendship … 
3

FIG. 1: 2D marginalized 68%, 95% and 99% credible regions
for the neutrino mass and thermally excited number of degrees
of freedom Ns. Top: The 3 + Ns scheme, in which ordinary
neutrinos have mν = 0, while sterile states have a common
mass scale ms. Bottom: The Ns +3 scheme, where the sterile
states are taken to be massless ms = 0, and 3.046 species of
ordinary neutrinos have a common mass mν .

trino mixing and mass parameters. Another possibility
is the presence of a small lepton asymmetry, which can
reduce the thermalization efficiency [34, 35]. Yet another
option is that the oscillation data are explained by 1 ster-
ile state plus new interactions [28]. Still, for reference we
provide mass bounds in Table II for the cases of Ns = 1
or 2 exactly, besides the variable Ns.
Discussion.—Allowing for extra radiation as a cos-

mological fit parameter, current cosmological data favor
additional radiation compatible with recent hints from
BBN. Assuming ordinary neutrinos to have a common
mass mν and the extra radiation to be massless, evidence
for Ns > 0 exceeds 95%, whereas the most constraining
upper limit comes from BBN. With currently favored 4He
and D abundances, it would be difficult to accommodate
two fully thermalized additional neutrino states.
The usual degeneracy between extra radiation and the

ordinary neutrino mass (Figure 1) weakens the neutrino
mass limits, with 1D credible intervals given in Table II.
However, it is more interesting to assume essentially

massless standard neutrinos and attribute a possible

TABLE II: 1D marginalized bounds on Ns and neutrino
masses. In rows 3–6 we have used Ns = 1 or 2 exactly. Two-
tailed limits are minimal credible intervals.

Scenario Range for Ns Range for ms or mν

68% 95% 68% 95%

3 +Ns 0.39–2.21 < 3.10 0.01–0.34 eV < 0.66 eV

Ns + 3 0.83–2.77 0.05–3.75 < 0.22 eV < 0.42 eV

2+3 — — < 0.20 eV < 0.30 eV

3+2 — — < 0.29 eV < 0.45 eV

1+3 — — < 0.16 eV < 0.24 eV

3+1 — — < 0.35 eV < 0.48 eV

Including supernova data (mlcs2k2):

3 +Ns 1.24–3.36 0.26–4.31 0.17–0.47 eV 0.09–0.64 eV

Including supernova data (salt-ii):

3 +Ns 0.02–1.54 < 2.57 < 0.28 eV < 0.66 eV

TABLE III: BBN constraints on Ns, using Ns ≥ 0 as a prior.
Maximum of the marginalised posterior and minimal 95%
credible interval (C.I.).

Data Posterior max 95% C.I.

Y IT
p +(D/H)p 0.68 0.01–1.39

Y A
p +(D/H)p 0.69 < 2.42

(D/H)p+ωCMB
b 0.49 < 2.12

mass to sterile neutrinos (3+Ns scenario). If we assume
Ns = 1, the 95% allowed mass range is ms < 0.48 eV. For
Ns = 2 it is 0.45 eV (Table II), although this case would
be disfavored by BBN. For Ns < 1, the 2D marginalized
posterior probability distribution has a long tail so that
ms

>
∼ 1 eV is marginally allowed: the fewer sterile states

there are, the larger the mass they can possess.
The relatively small masses favored by cosmology are

not assured to provide good fits to the short-baseline ap-
pearance experiments—in principle a combined analysis
as in Ref. [31] is desirable but complicated because of
the many parameters involved. Moreover, the degree of
thermalization of the additional states would have to be
considered in detail. Two fully thermalized states, cor-
responding to Ns = 2, are difficult to accommodate in
BBN even with the new helium abundances.

Our main message is that on present evidence, cos-
mology does not exclude sterile neutrinos if they are not
too heavy and thus do not contribute excessive amounts
of hot dark matter. Quite on the contrary, both BBN
and precision observations would happily welcome some
amount of additional radiation corresponding to around
one new thermal degree of freedom. Low-mass sterile
neutrinos are one natural possibility.
Low-mass sterile neutrinos mixed with active ones can

strongly modify the neutrino signal from a core-collapse
SN and r-process nucleosynthesis in the neutrino-driven
wind [21, 45–48]. These effects should be studied in the

Hamann, Hannestad, Raffelt, Tamborrra, Wong (2010) 

After WMAP-7 (+ LSS + small-scale CMB + H-HST) mild preference for extra radiation 

“Cosmology seeking friendship with ... ” extra radiation. 



 … Break-Up 

Planck Collaboration (2013) 

No evidence for extra radiation! 

Planck Collaboration: Cosmological parameters
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Fig. 28. Left: 2D joint posterior distribution between Neff and
�

mν (the summed mass of the three active neutrinos) in models with
extra massless neutrino-like species. Right: Samples in the Neff–meff

ν, sterile plane, colour-coded by Ωch2, in models with one massive
sterile neutrino family, with effective mass meff

ν, sterile, and the three active neutrinos as in the base ΛCDM model. The physical mass
of the sterile neutrino in the thermal scenario, mthermal

sterile , is constant along the grey dashed lines, with the indicated mass in eV. The
physical mass in the Dodelson-Widrow scenario, mDW

sterile, is constant along the dotted lines (with the value indicated on the adjacent
dashed lines). Note the pile up of points at low values of Neff , caused because the sterile neutrino component behaves like cold dark
matter there, introducing a strong degeneracy between the two components, as described in the text.

Here, recall that Tν = (4/11)1/3Tγ is the active neutrino temper-
ature in the instantaneous-decoupling limit and that the effective
number is defined via the energy density, ∆Neff = (Ts/Tν)4. In
the Dodelson-Widrow case the relation is given by

meff
ν, sterile = χsmDW

sterile , (81)

with ∆Neff = χs. For a thermalized sterile neutrino with temper-
ature Tν (i.e., the temperature the active neutrinos would have if
there were no heating at electron-positron annihilation), corre-
sponding to ∆Neff = 1, the three masses are equal to each other.

Assuming flat priors on Neff and meff
ν, sterile with meff

ν, sterile <
3 eV, we find the results shown in Fig. 28. The physical mass,
mthermal

sterile in the thermal scenario is constant along the dashed lines
in the figure and takes the indicated value in eV. The physical
mass, mDW

sterile, in the Dodelson-Widrow scenario is constant on
the dotted lines. For low Neff the physical mass of the neutrinos
becomes very large, so that they become non-relativistic well be-
fore recombination. In the limit in which the neutrinos become
non-relativistic well before any relevant scales enter the horizon,
they will behave exactly like cold dark matter, and hence are
completely unconstrained within the overall total constraint on
the dark matter density. For intermediate cases where the neutri-
nos become non-relativistic well before recombination they be-
have like warm dark matter. The approach to the massive limit
gives the tail of allowed models with large meff

ν, sterile and low Neff

shown in Fig. 28, with increasing meff
ν, sterile being compensated

by decreasedΩch2 to maintain the total level required to give the
correct shape to the CMB power spectrum.

For low meff
ν, sterile and ∆Neff away from zero the physical neu-

trino mass is very light, and the constraint becomes similar to
the massless case. The different limits are continuously con-
nected, and given the complicated shape seen in Fig. 28 it is
clearly not appropriate to quote fully marginalized parameter
constraints that would depend strongly on the assumed upper
limit on meff

ν, sterile. Instead we restrict attention to the case where

the physical mass is mthermal
sterile < 10 eV, which roughly defines the

region where (for the CMB) the particles are distinct from cold
or warm dark matter. Using the Planck+WP+highL (abbreviated
to CMB below) data combination, this gives the marginalized
one-parameter constraints

Neff < 3.91
meff
ν, sterile < 0.59 eV


 (95%; CMB for mthermal

sterile < 10 eV) . (82)

Combining further with BAO these tighten to

Neff < 3.80
meff
ν, sterile < 0.42 eV


 (95%; CMB+BAO for mthermal

sterile < 10 eV) .

(83)

These bounds are only marginally compatible with a fully ther-
malized sterile neutrino (Neff ≈ 4) with sub-eV mass mthermal

sterile ≈
meff
ν, sterile < 0.5 eV that could explain the oscillation anomalies.

The above contraints are also appropriate for the Dodelson-
Widrow scenario, but for a physical mass cut of mDW

sterile < 20 eV.
The thermal and Dodelson-Widrow scenarios considered

here are representative of a large number of possible models that
have recently been investigated in the literature (Hamann et al.
2011; Diamanti et al. 2012; Archidiacono et al. 2012;
Hannestad et al. 2012).

6.4. Big bang nucleosynthesis

Observations of light elements abundances created during big
bang nucleosynthesis (BBN) provided one of the earliest preci-
sion tests of cosmology and were critical in establishing the ex-
istence of a hot big bang. Up-to-date accounts of nucleosynthe-
sis are given by Iocco et al. (2009) and Steigman (2012). In the
standard BBN model, the abundance of light elements (parame-
terized by YBBN

P ≡ 4nHe/nb for helium-4 and yBBN
DP ≡ 105nD/nH

46



Friendship Renewed? 

15

FIG. 4: Left panel: the red contours show the 68% and 95% CL allowed regions from the combination of CMB data, BOSS
DR11 BAO measurements and WiggleZ full shape power spectrum measurements in the (

�
mν (eV), Neff) plane. The blue

contours depict the constraints after a prior on the Hubble constant from HST and the remaining BAO data are added in the
analysis. Right panel: as in the left panel but in the (

�
mν (eV), meff

s (eV)) plane.

FIG. 5: Left panel: Constraints in the Neff vs r plane from Planck+WP and Planck+WP+BICEP2 data. Notice how the
inclusion of the BICEP2 constraint shifts the contours towards Neff > 3. Right panel: constraints on the Σmν vs r plane from
Planck+WP and Planck+WP+BICEP2 data. In this case there is no indication for neutrino masses from the combination of
CMB data.

Planck+WP limit of r < 0.11 at 95% c.l. and the re-

cent BICEP2 result. This tension appears as less evident

when extra relativistic particles are included. We imag-

ine a further preference for Neff > 3 if the HST data is

included. The BICEP2 result does not affect the current

constraints on neutrino masses as we can see from the

right side of figure Fig. 5.

Giusarma, Valentino, Lattanzi, Melchiorri, Mena (2014, arXiv:1403.4852) 

Planck and BICEP2 values of r come into closer agreement if there is extra radiation. 



Dark Radiation Candidates 

•  Many possibilities with good motivations … 
– Thermal QCD axions (Strong CP) 
– Hidden Photons (Extra U(1)s, …) 
– Sterile Neutrinos (This talk) 
– … 



Cosmological Sterile Neutrinos 
•  Vacuum mixing (Dodelson-Widrow) 
–  Usual mixing of active-sterile.  
–  Hot sterile nus. 

•  Resonant production (Shi-Fuller) 
–  Steriles produced only via a MSW resonance that needs a 

large lepton asymmetry.  
–  Cold/Warm sterile nus. 

•  … 



Effective m and N 
Often the temperature of the active neutrinos and the sterile neutrinos are 
not the same. 
 
Even if sterile neutrinos were in equilibrium at some early temperature, the 
decay of SM (or Sterile) sector particles can lead to different temperatures. 
 
Say the two were in thermal equilibrium above ~TeV, then 

Ts =

�
g∗(Tγ)

g∗(TeV)

�1/3

Tγ

So effective number and energy densities of sterile neutrinos can be different (lower).  
But typically oscillations bring them back in equilibrium, and this suppression is absent. 



Endangered Sterile Neutrinos Planck Collaboration: Cosmological parameters
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Fig. 28. Left: 2D joint posterior distribution between Neff and
�

mν (the summed mass of the three active neutrinos) in models with
extra massless neutrino-like species. Right: Samples in the Neff–meff

ν, sterile plane, colour-coded by Ωch2, in models with one massive
sterile neutrino family, with effective mass meff

ν, sterile, and the three active neutrinos as in the base ΛCDM model. The physical mass
of the sterile neutrino in the thermal scenario, mthermal

sterile , is constant along the grey dashed lines, with the indicated mass in eV. The
physical mass in the Dodelson-Widrow scenario, mDW

sterile, is constant along the dotted lines (with the value indicated on the adjacent
dashed lines). Note the pile up of points at low values of Neff , caused because the sterile neutrino component behaves like cold dark
matter there, introducing a strong degeneracy between the two components, as described in the text.

Here, recall that Tν = (4/11)1/3Tγ is the active neutrino temper-
ature in the instantaneous-decoupling limit and that the effective
number is defined via the energy density, ∆Neff = (Ts/Tν)4. In
the Dodelson-Widrow case the relation is given by

meff
ν, sterile = χsmDW

sterile , (81)

with ∆Neff = χs. For a thermalized sterile neutrino with temper-
ature Tν (i.e., the temperature the active neutrinos would have if
there were no heating at electron-positron annihilation), corre-
sponding to ∆Neff = 1, the three masses are equal to each other.

Assuming flat priors on Neff and meff
ν, sterile with meff

ν, sterile <
3 eV, we find the results shown in Fig. 28. The physical mass,
mthermal

sterile in the thermal scenario is constant along the dashed lines
in the figure and takes the indicated value in eV. The physical
mass, mDW

sterile, in the Dodelson-Widrow scenario is constant on
the dotted lines. For low Neff the physical mass of the neutrinos
becomes very large, so that they become non-relativistic well be-
fore recombination. In the limit in which the neutrinos become
non-relativistic well before any relevant scales enter the horizon,
they will behave exactly like cold dark matter, and hence are
completely unconstrained within the overall total constraint on
the dark matter density. For intermediate cases where the neutri-
nos become non-relativistic well before recombination they be-
have like warm dark matter. The approach to the massive limit
gives the tail of allowed models with large meff

ν, sterile and low Neff

shown in Fig. 28, with increasing meff
ν, sterile being compensated

by decreasedΩch2 to maintain the total level required to give the
correct shape to the CMB power spectrum.

For low meff
ν, sterile and ∆Neff away from zero the physical neu-

trino mass is very light, and the constraint becomes similar to
the massless case. The different limits are continuously con-
nected, and given the complicated shape seen in Fig. 28 it is
clearly not appropriate to quote fully marginalized parameter
constraints that would depend strongly on the assumed upper
limit on meff

ν, sterile. Instead we restrict attention to the case where

the physical mass is mthermal
sterile < 10 eV, which roughly defines the

region where (for the CMB) the particles are distinct from cold
or warm dark matter. Using the Planck+WP+highL (abbreviated
to CMB below) data combination, this gives the marginalized
one-parameter constraints

Neff < 3.91
meff
ν, sterile < 0.59 eV


 (95%; CMB for mthermal

sterile < 10 eV) . (82)

Combining further with BAO these tighten to

Neff < 3.80
meff
ν, sterile < 0.42 eV


 (95%; CMB+BAO for mthermal

sterile < 10 eV) .

(83)

These bounds are only marginally compatible with a fully ther-
malized sterile neutrino (Neff ≈ 4) with sub-eV mass mthermal

sterile ≈
meff
ν, sterile < 0.5 eV that could explain the oscillation anomalies.

The above contraints are also appropriate for the Dodelson-
Widrow scenario, but for a physical mass cut of mDW

sterile < 20 eV.
The thermal and Dodelson-Widrow scenarios considered

here are representative of a large number of possible models that
have recently been investigated in the literature (Hamann et al.
2011; Diamanti et al. 2012; Archidiacono et al. 2012;
Hannestad et al. 2012).

6.4. Big bang nucleosynthesis

Observations of light elements abundances created during big
bang nucleosynthesis (BBN) provided one of the earliest preci-
sion tests of cosmology and were critical in establishing the ex-
istence of a hot big bang. Up-to-date accounts of nucleosynthe-
sis are given by Iocco et al. (2009) and Steigman (2012). In the
standard BBN model, the abundance of light elements (parame-
terized by YBBN

P ≡ 4nHe/nb for helium-4 and yBBN
DP ≡ 105nD/nH

46

Planck Collaboration: Cosmological parameters
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Fig. 28. Left: 2D joint posterior distribution between Neff and
�

mν (the summed mass of the three active neutrinos) in models with
extra massless neutrino-like species. Right: Samples in the Neff–meff

ν, sterile plane, colour-coded by Ωch2, in models with one massive
sterile neutrino family, with effective mass meff

ν, sterile, and the three active neutrinos as in the base ΛCDM model. The physical mass
of the sterile neutrino in the thermal scenario, mthermal

sterile , is constant along the grey dashed lines, with the indicated mass in eV. The
physical mass in the Dodelson-Widrow scenario, mDW

sterile, is constant along the dotted lines (with the value indicated on the adjacent
dashed lines). Note the pile up of points at low values of Neff , caused because the sterile neutrino component behaves like cold dark
matter there, introducing a strong degeneracy between the two components, as described in the text.

Here, recall that Tν = (4/11)1/3Tγ is the active neutrino temper-
ature in the instantaneous-decoupling limit and that the effective
number is defined via the energy density, ∆Neff = (Ts/Tν)4. In
the Dodelson-Widrow case the relation is given by

meff
ν, sterile = χsmDW

sterile , (81)

with ∆Neff = χs. For a thermalized sterile neutrino with temper-
ature Tν (i.e., the temperature the active neutrinos would have if
there were no heating at electron-positron annihilation), corre-
sponding to ∆Neff = 1, the three masses are equal to each other.

Assuming flat priors on Neff and meff
ν, sterile with meff

ν, sterile <
3 eV, we find the results shown in Fig. 28. The physical mass,
mthermal

sterile in the thermal scenario is constant along the dashed lines
in the figure and takes the indicated value in eV. The physical
mass, mDW

sterile, in the Dodelson-Widrow scenario is constant on
the dotted lines. For low Neff the physical mass of the neutrinos
becomes very large, so that they become non-relativistic well be-
fore recombination. In the limit in which the neutrinos become
non-relativistic well before any relevant scales enter the horizon,
they will behave exactly like cold dark matter, and hence are
completely unconstrained within the overall total constraint on
the dark matter density. For intermediate cases where the neutri-
nos become non-relativistic well before recombination they be-
have like warm dark matter. The approach to the massive limit
gives the tail of allowed models with large meff

ν, sterile and low Neff

shown in Fig. 28, with increasing meff
ν, sterile being compensated

by decreasedΩch2 to maintain the total level required to give the
correct shape to the CMB power spectrum.

For low meff
ν, sterile and ∆Neff away from zero the physical neu-

trino mass is very light, and the constraint becomes similar to
the massless case. The different limits are continuously con-
nected, and given the complicated shape seen in Fig. 28 it is
clearly not appropriate to quote fully marginalized parameter
constraints that would depend strongly on the assumed upper
limit on meff

ν, sterile. Instead we restrict attention to the case where

the physical mass is mthermal
sterile < 10 eV, which roughly defines the

region where (for the CMB) the particles are distinct from cold
or warm dark matter. Using the Planck+WP+highL (abbreviated
to CMB below) data combination, this gives the marginalized
one-parameter constraints

Neff < 3.91
meff
ν, sterile < 0.59 eV


 (95%; CMB for mthermal

sterile < 10 eV) . (82)

Combining further with BAO these tighten to

Neff < 3.80
meff
ν, sterile < 0.42 eV


 (95%; CMB+BAO for mthermal

sterile < 10 eV) .

(83)

These bounds are only marginally compatible with a fully ther-
malized sterile neutrino (Neff ≈ 4) with sub-eV mass mthermal

sterile ≈
meff
ν, sterile < 0.5 eV that could explain the oscillation anomalies.

The above contraints are also appropriate for the Dodelson-
Widrow scenario, but for a physical mass cut of mDW

sterile < 20 eV.
The thermal and Dodelson-Widrow scenarios considered

here are representative of a large number of possible models that
have recently been investigated in the literature (Hamann et al.
2011; Diamanti et al. 2012; Archidiacono et al. 2012;
Hannestad et al. 2012).

6.4. Big bang nucleosynthesis

Observations of light elements abundances created during big
bang nucleosynthesis (BBN) provided one of the earliest preci-
sion tests of cosmology and were critical in establishing the ex-
istence of a hot big bang. Up-to-date accounts of nucleosynthe-
sis are given by Iocco et al. (2009) and Steigman (2012). In the
standard BBN model, the abundance of light elements (parame-
terized by YBBN

P ≡ 4nHe/nb for helium-4 and yBBN
DP ≡ 105nD/nH
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Planck Collaboration (2013) 

Oscillation-friendly neutrinos  
are in tension with cosmology 



Take Away # I: 
Strong cosmological bounds on a  
well-mixed light sterile neutrino.  



Ways to avoid the constraint 

•  Large lepton asymmetry 
–  Foot and Volkas (1995)  

•  Majorons 
–  Babu and Rothstein (1992), Bento and Bereziani (2001),  

•  Very low reheating temperature 
–  Gelmini, Palomarez-Ruiz, Pascoli (2004) 

•  Dilution by decay of exotic heavy particles 
–  Fuller, Kishimoto, Kusenko (2011), Ho and Scherrer (2012), … 

•  ... 



Not only avoid the constraint, but 
something better 

Based on  
Dasgupta and Kopp, Phys. Rev. Lett. 112 (2014) 



The Not-So-Sterile Neutrino 

Add to SM a sterile neutrino that has some gauge interaction via a new light 
gauge boson A.  
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BBN, CMB, and large-scale structure if we allow them
to be charged under a new gauge interaction mediated
by a MeV-scale boson. In this case, sterile neutrino pro-
duction in the early Universe is suppressed due to the
thermal MSW potential generated by the mediator and
by sterile neutrinos themselves. Our proposed scenario
leads to a small fractional number of extra relativistic
degrees of freedom in the early Universe, which may be
experimentally testable in the future. If the considered
boson also couples to DM, it could simultaneously ex-
plain observed departures of small-scale structures from
the predictions of cold DM simulations.

ACKNOWLEDGMENTS

We are grateful to Torsten Bringmann, Xiaoyong Chu,
Maxim Pospelov, and Georg Raffelt for useful discus-
sions. JK would like to thank the Aspen Center for
Physics, funded by the US National Science Foundation
under grant No. 1066293, for kind hospitality and sup-
port during part of this work. We acknowledge the use
of the FeynCalc [49] and JaxoDraw [50] packages.

Appendix A: Thermal Corrections to Self-Energy

Here, we derive the dispersion relation for sterile neu-
trinos coupled to a U(1)χ gauge force in the regime of
nonzero temperature and density. Our approach closely
follows [19, 20, 51, 52].

From considerations of Lorentz invariance, the sterile
neutrino self energy at one-loop can be expressed as

Σ(k) = (m− a/k − b/u)PL . (8)

Here, PL = (1 − γ5)/2 is a chirality projector, m is the
sterile neutrino mass, p is its 4-momentum and u is the
4-momentum of the heat bath. We work in the rest frame
of the heat bath, so we take u = (1, 0, 0, 0).

This thermal self-energy modifies the dispersion rela-
tion to

det(/k − Σ(k)) = 0 , (9)

which, in the ultrarelativistic regime, k0 ≈ |k|, gives

k0 = |k|+ m2

2|k| − b (10)

to linear order in the coefficients a and b. Note that the
usual dispersion relation for an ultrarelativistic neutrino,
k0 = |k|+ m2

2|k| , is modified by an effective potential

Veff ≡ −b . (11)

The coefficient b can then be obtained according to the
relation

b =
1

2k2

�
[(k0)2 − k2]tr /uΣ(k)− k0tr /kΣ(k)

�
. (12)

So, the remaining job is to calculate Σ(k).
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f
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Figure 3. Bubble and tadpole contributions to the sterile neu-
trino self-energy, which create an effective “matter” potential.

We assume a Lagrangian Lint = eχf̄γµPLfA�
µ, where

eχ is the U(1)χ gauge coupling. At lowest order, Σ(k)
receives contributions from the bubble and tadpole dia-
grams shown in Fig. 3. In the real time formalism, these
diagrams are calculated using the unitary gauge thermal
propagators for the fermion,

S(p) = (/p+m)

�
1

p2 −m2
+ iΓf (p)

�
, (13)

and the gauge boson

Dµν(p) = (−gµν + pµpν/M2)

�
1

p2 −M2
+ iΓb(p)

�
.

(14)

The thermal parts are given by

Γf (p) = 2πδ(p2 −m2)ηf (p) , (15)

Γb(p) = 2πδ(p2 −M2)ηb(p) , (16)

respectively, with the distribution functions

ηf (p) = [e|p·u|/Ts + 1]−1 , (17)

ηb(p) = [e|p·u|/Ts − 1]−1 . (18)

The form of S(p) and Dµν(p) can be understood from
the fact that at finite temperature and density, there are
not only virtual νs and A� in the medium, but also real
particles that have been thermally excited.

The diagrams in Fig. 3 are given by

Σbubble(k) = −ie2χ

�
d4p

(2π)4
γµ PL iS(p+ k) γν iDµν(p) ,

(19)

Σtadpole(k) = ie2χγ
µ PL iDµν(0)

�
d4p

(2π)4
tr

�
γν PL iS(p)

�
.

(20)

Sterile neutrinos acquire a “thermal mass” due to their 
interactions with virtual/real gauge bosons which can be 
quite large at high-T. 
 
They are not produced by oscillations if this mass 
exceeds the active-sterile neutrino oscillation frequency. 
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by sterile neutrinos themselves. Our proposed scenario
leads to a small fractional number of extra relativistic
degrees of freedom in the early Universe, which may be
experimentally testable in the future. If the considered
boson also couples to DM, it could simultaneously ex-
plain observed departures of small-scale structures from
the predictions of cold DM simulations.

ACKNOWLEDGMENTS

We are grateful to Torsten Bringmann, Xiaoyong Chu,
Maxim Pospelov, and Georg Raffelt for useful discus-
sions. JK would like to thank the Aspen Center for
Physics, funded by the US National Science Foundation
under grant No. 1066293, for kind hospitality and sup-
port during part of this work. We acknowledge the use
of the FeynCalc [49] and JaxoDraw [50] packages.

Appendix A: Thermal Corrections to Self-Energy

Here, we derive the dispersion relation for sterile neu-
trinos coupled to a U(1)χ gauge force in the regime of
nonzero temperature and density. Our approach closely
follows [19, 20, 51, 52].

From considerations of Lorentz invariance, the sterile
neutrino self energy at one-loop can be expressed as

Σ(k) = (m− a/k − b/u)PL . (8)

Here, PL = (1 − γ5)/2 is a chirality projector, m is the
sterile neutrino mass, p is its 4-momentum and u is the
4-momentum of the heat bath. We work in the rest frame
of the heat bath, so we take u = (1, 0, 0, 0).

This thermal self-energy modifies the dispersion rela-
tion to

det(/k − Σ(k)) = 0 , (9)

which, in the ultrarelativistic regime, k0 ≈ |k|, gives

k0 = |k|+ m2

2|k| − b (10)

to linear order in the coefficients a and b. Note that the
usual dispersion relation for an ultrarelativistic neutrino,
k0 = |k|+ m2

2|k| , is modified by an effective potential

Veff ≡ −b . (11)

The coefficient b can then be obtained according to the
relation

b =
1

2k2

�
[(k0)2 − k2]tr /uΣ(k)− k0tr /kΣ(k)

�
. (12)

So, the remaining job is to calculate Σ(k).

νs νs

A�

A�

νs νs

f

νs

Figure 3. Bubble and tadpole contributions to the sterile neu-
trino self-energy, which create an effective “matter” potential.

We assume a Lagrangian Lint = eχf̄γµPLfA�
µ, where

eχ is the U(1)χ gauge coupling. At lowest order, Σ(k)
receives contributions from the bubble and tadpole dia-
grams shown in Fig. 3. In the real time formalism, these
diagrams are calculated using the unitary gauge thermal
propagators for the fermion,

S(p) = (/p+m)

�
1

p2 −m2
+ iΓf (p)

�
, (13)

and the gauge boson

Dµν(p) = (−gµν + pµpν/M2)

�
1

p2 −M2
+ iΓb(p)

�
.

(14)

The thermal parts are given by

Γf (p) = 2πδ(p2 −m2)ηf (p) , (15)

Γb(p) = 2πδ(p2 −M2)ηb(p) , (16)

respectively, with the distribution functions

ηf (p) = [e|p·u|/Ts + 1]−1 , (17)

ηb(p) = [e|p·u|/Ts − 1]−1 . (18)

The form of S(p) and Dµν(p) can be understood from
the fact that at finite temperature and density, there are
not only virtual νs and A� in the medium, but also real
particles that have been thermally excited.

The diagrams in Fig. 3 are given by

Σbubble(k) = −ie2χ

�
d4p

(2π)4
γµ PL iS(p+ k) γν iDµν(p) ,

(19)

Σtadpole(k) = ie2χγ
µ PL iDµν(0)

�
d4p

(2π)4
tr

�
γν PL iS(p)

�
.

(20)

5

ACKNOWLEDGMENTS

We are grateful to Georg Raffelt for useful discussions.
JK would like to thank the Aspen Center for Physics,
funded by the US National Science Foundation under
grant No. 1066293, for kind hospitality and support dur-
ing part of this work. We acknowledge the use of the
FeynCalc [40] and JaxoDraw [41] packages. Ref. [42] ap-
peared the day we submitted our paper to arXiv, and
addresses some of the issues described here.

Appendix A

Here, we derive the dispersion relation for sterile neu-
trinos coupled to a U(1)s gauge force in the regime of
nonzero temperature and density. Our approach closely
follows [15, 16, 43, 44].
From considerations of Lorentz invariance, the sterile

neutrino self energy at one-loop can be expressed as
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Here, PL = (1 − γ5)/2 is a chirality projector, m is the
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of the heat bath, so we take u = (1, 0, 0, 0).
This thermal self-energy modifies the dispersion rela-

tion to

det(/k − Σ(k)) = 0 , (12)

which, in the ultrarelativistic regime, k0 ≈ |k|, gives

k0 = |k|+ m2

2|k| − b (13)

to linear order in the coefficients a and b. Note that the
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2|k| , is modified by an effective potential
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The coefficient b can then be obtained according to the
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So, the remaining job is to calculate Σ(k).
We assume a Lagrangian Lint = κf̄γµPLfA�

µ, and at
lowest order, Σ(k) receives contributions from the bub-
ble and tadpole diagrams shown in Fig. 1. In the real
time formalism, these diagrams are calculated using the
unitary gauge thermal propagators for the fermion,

S(p) = (/p+m)
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1
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+ iΓf (p)

�
, (16)

and the gauge boson
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The thermal parts are given by
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Γb(p) = 2πδ(p2 −M2)ηb(p) , (19)

respectively, with the distribution functions

ηf (p) = [e|p·u|/Ts + 1]−1 , (20)

ηb(p) = [e|p·u|/Ts − 1]−1 . (21)

The form of S(p) and Dµν(p) can be understood from
the fact that at finite temperature and density, there are
not only virtual νs and A� in the medium, but also real
particles that have been thermally excited.

The diagrams in Fig. 1 are given by

Σbubble(k) = −iκ2
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d4p

(2π)4
γµ PL iS(p+ k) γν iDµν(p) ,

(22)

Σtadpole(k) = iκ2γµ PL iDµν(0)

�
d4p

(2π)4
tr

�
γν PL iS(p)

�
,

(23)

where κ is the U(1)s gauge coupling. Since we are in-
terested in the leading thermal corrections, we evaluate
only terms proportional to one power of Γf or Γb.

The leading thermal contributions to the bubble dia-
gram are

κ2

�
d4p

(2π)4
γµ(/k + /p)γ

νPL

�
− gµν +

pµpν
M2

�

×
�
iΓf (k + p)

p2 −M2
− iΓb(p)

(k + p)2 −m2

�
. (24)

We evaluate this expression by first using the δ-functions
in Γf and Γb to carry out the p0 integral. The remain-
ing 3-momentum integral can be evaluated in spherical
coordinates, with the z-axis defined by the direction of
k. In this coordinate system, the integral over the az-
imuthal angle is trivial, and the second angular integral
can be evaluated. We have checked that at this stage
our results agree with those of [44] if we neglect the con-
tributions of longitudinal polarization state of the gauge
boson, as these authors have done.

The remaining integral over |p| can be carried out nu-
merically, but we derive analytical approximations for
the two important limiting cases. In the limit of small
temperatures, |k|, Ts � M , we expand to leading order
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to be charged under a new gauge interaction mediated
by a MeV-scale boson. In this case, sterile neutrino pro-
duction in the early Universe is suppressed due to the
thermal MSW potential generated by the mediator and
by sterile neutrinos themselves. Our proposed scenario
leads to a small fractional number of extra relativistic
degrees of freedom in the early Universe, which may be
experimentally testable in the future. If the considered
boson also couples to DM, it could simultaneously ex-
plain observed departures of small-scale structures from
the predictions of cold DM simulations.
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Appendix A

Here, we derive the dispersion relation for sterile neu-
trinos coupled to a U(1)s gauge force in the regime of
nonzero temperature and density. Our approach closely
follows [15, 16, 43, 44].
From considerations of Lorentz invariance, the sterile

neutrino self energy at one-loop can be expressed as

Σ(k) = (m− a/k − b/u)PL . (11)

Here, PL = (1 − γ5)/2 is a chirality projector, m is the
sterile neutrino mass, p is its 4-momentum and u is the
4-momentum of the heat bath. We work in the rest frame
of the heat bath, so we take u = (1, 0, 0, 0).
This thermal self-energy modifies the dispersion rela-

tion to

det(/k − Σ(k)) = 0 , (12)

which, in the ultrarelativistic regime, k0 ≈ |k|, gives

k0 = |k|+ m2

2|k| − b (13)

to linear order in the coefficients a and b. Note that the
usual dispersion relation for an ultrarelativistic neutrino,
k0 = |k|+ m2

2|k| , is modified by an effective potential

Veff ≡ −b . (14)

The coefficient b can then be obtained according to the
relation

b =
1

2k2

�
[(k0)2 − k2]tr /uΣ(k)− k0tr /kΣ(k)

�
. (15)

So, the remaining job is to calculate Σ(k).
We assume a Lagrangian Lint = κf̄γµPLfA�

µ, and at
lowest order, Σ(k) receives contributions from the bub-
ble and tadpole diagrams shown in Fig. 1. In the real
time formalism, these diagrams are calculated using the
unitary gauge thermal propagators for the fermion,

S(p) = (/p+m)

�
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p2 −m2
+ iΓf (p)

�
, (16)

and the gauge boson

Dµν(p) = (−gµν + pµpν/M2)

�
1

p2 −M2
+ iΓb(p)

�
.

(17)

The thermal parts are given by

Γf (p) = 2πδ(p2 −m2)ηf (p) , (18)

Γb(p) = 2πδ(p2 −M2)ηb(p) , (19)

respectively, with the distribution functions

ηf (p) = [e|p·u|/Ts + 1]−1 , (20)

ηb(p) = [e|p·u|/Ts − 1]−1 . (21)

The form of S(p) and Dµν(p) can be understood from
the fact that at finite temperature and density, there are
not only virtual νs and A� in the medium, but also real
particles that have been thermally excited.

The diagrams in Fig. 1 are given by
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�
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�
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�
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(23)

where κ is the U(1)s gauge coupling. Since we are in-
terested in the leading thermal corrections, we evaluate
only terms proportional to one power of Γf or Γb.

The leading thermal contributions to the bubble dia-
gram are

κ2

�
d4p

(2π)4
γµ(/k + /p)γ

νPL

�
− gµν +

pµpν
M2

�

×
�
iΓf (k + p)

p2 −M2
− iΓb(p)

(k + p)2 −m2

�
. (24)

We evaluate this expression by first using the δ-functions
in Γf and Γb to carry out the p0 integral. The remain-
ing 3-momentum integral can be evaluated in spherical
coordinates, with the z-axis defined by the direction of
k. In this coordinate system, the integral over the az-
imuthal angle is trivial, and the second angular integral
can be evaluated. We have checked that at this stage
our results agree with those of [44] if we neglect the con-
tributions of longitudinal polarization state of the gauge
boson, as these authors have done.

The remaining integral over |p| can be carried out nu-
merically, but we derive analytical approximations for
the two important limiting cases. In the limit of small
temperatures, |k|, Ts � M , we expand to leading order
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Here, we derive the dispersion relation for sterile neu-
trinos coupled to a U(1)χ gauge force in the regime of
nonzero temperature and density. Our approach closely
follows [19, 20, 51, 52].
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neutrino self energy at one-loop can be expressed as

Σ(k) = (m− a/k − b/u)PL . (8)

Here, PL = (1 − γ5)/2 is a chirality projector, m is the
sterile neutrino mass, p is its 4-momentum and u is the
4-momentum of the heat bath. We work in the rest frame
of the heat bath, so we take u = (1, 0, 0, 0).

This thermal self-energy modifies the dispersion rela-
tion to
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to linear order in the coefficients a and b. Note that the
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The coefficient b can then be obtained according to the
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µ, where

eχ is the U(1)χ gauge coupling. At lowest order, Σ(k)
receives contributions from the bubble and tadpole dia-
grams shown in Fig. 3. In the real time formalism, these
diagrams are calculated using the unitary gauge thermal
propagators for the fermion,

S(p) = (/p+m)
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1
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+ iΓf (p)
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, (13)

and the gauge boson

Dµν(p) = (−gµν + pµpν/M2)
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1
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+ iΓb(p)
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.

(14)

The thermal parts are given by

Γf (p) = 2πδ(p2 −m2)ηf (p) , (15)

Γb(p) = 2πδ(p2 −M2)ηb(p) , (16)

respectively, with the distribution functions

ηf (p) = [e|p·u|/Ts + 1]−1 , (17)

ηb(p) = [e|p·u|/Ts − 1]−1 . (18)

The form of S(p) and Dµν(p) can be understood from
the fact that at finite temperature and density, there are
not only virtual νs and A� in the medium, but also real
particles that have been thermally excited.

The diagrams in Fig. 3 are given by
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The form of S(p) and Dµν(p) can be understood from
the fact that at finite temperature and density, there are
not only virtual νs and A� in the medium, but also real
particles that have been thermally excited.
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We assume a Lagrangian Lint = κf̄γµPLfA�

µ, and at
lowest order, Σ(k) receives contributions from the bub-
ble and tadpole diagrams shown in Fig. 1. In the real
time formalism, these diagrams are calculated using the
unitary gauge thermal propagators for the fermion,

S(p) = (/p+m)

�
1

p2 −m2
+ iΓf (p)

�
, (16)

and the gauge boson

Dµν(p) = (−gµν + pµpν/M2)

�
1

p2 −M2
+ iΓb(p)

�
.

(17)

The thermal parts are given by

Γf (p) = 2πδ(p2 −m2)ηf (p) , (18)

Γb(p) = 2πδ(p2 −M2)ηb(p) , (19)

respectively, with the distribution functions

ηf (p) = [e|p·u|/Ts + 1]−1 , (20)

ηb(p) = [e|p·u|/Ts − 1]−1 . (21)

The form of S(p) and Dµν(p) can be understood from
the fact that at finite temperature and density, there are
not only virtual νs and A� in the medium, but also real
particles that have been thermally excited.

The diagrams in Fig. 1 are given by

Σbubble(k) = −iκ2

�
d4p

(2π)4
γµ PL iS(p+ k) γν iDµν(p) ,

(22)

Σtadpole(k) = iκ2γµ PL iDµν(0)

�
d4p

(2π)4
tr

�
γν PL iS(p)

�
,

(23)

where κ is the U(1)s gauge coupling. Since we are in-
terested in the leading thermal corrections, we evaluate
only terms proportional to one power of Γf or Γb.

The leading thermal contributions to the bubble dia-
gram are

κ2

�
d4p

(2π)4
γµ(/k + /p)γ

νPL

�
− gµν +

pµpν
M2

�

×
�
iΓf (k + p)

p2 −M2
− iΓb(p)

(k + p)2 −m2

�
. (24)

We evaluate this expression by first using the δ-functions
in Γf and Γb to carry out the p0 integral. The remain-
ing 3-momentum integral can be evaluated in spherical
coordinates, with the z-axis defined by the direction of
k. In this coordinate system, the integral over the az-
imuthal angle is trivial, and the second angular integral
can be evaluated. We have checked that at this stage
our results agree with those of [44] if we neglect the con-
tributions of longitudinal polarization state of the gauge
boson, as these authors have done.

The remaining integral over |p| can be carried out nu-
merically, but we derive analytical approximations for
the two important limiting cases. In the limit of small
temperatures, |k|, Ts � M , we expand to leading order
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Appendix A: Thermal Corrections to Self-Energy

Here, we derive the dispersion relation for sterile neu-
trinos coupled to a U(1)χ gauge force in the regime of
nonzero temperature and density. Our approach closely
follows [19, 20, 51, 52].

From considerations of Lorentz invariance, the sterile
neutrino self energy at one-loop can be expressed as

Σ(k) = (m− a/k − b/u)PL . (8)

Here, PL = (1 − γ5)/2 is a chirality projector, m is the
sterile neutrino mass, p is its 4-momentum and u is the
4-momentum of the heat bath. We work in the rest frame
of the heat bath, so we take u = (1, 0, 0, 0).

This thermal self-energy modifies the dispersion rela-
tion to

det(/k − Σ(k)) = 0 , (9)

which, in the ultrarelativistic regime, k0 ≈ |k|, gives

k0 = |k|+ m2

2|k| − b (10)

to linear order in the coefficients a and b. Note that the
usual dispersion relation for an ultrarelativistic neutrino,
k0 = |k|+ m2

2|k| , is modified by an effective potential

Veff ≡ −b . (11)

The coefficient b can then be obtained according to the
relation

b =
1

2k2

�
[(k0)2 − k2]tr /uΣ(k)− k0tr /kΣ(k)

�
. (12)

So, the remaining job is to calculate Σ(k).
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Figure 3. Bubble and tadpole contributions to the sterile neu-
trino self-energy, which create an effective “matter” potential.

We assume a Lagrangian Lint = eχf̄γµPLfA�
µ, where

eχ is the U(1)χ gauge coupling. At lowest order, Σ(k)
receives contributions from the bubble and tadpole dia-
grams shown in Fig. 3. In the real time formalism, these
diagrams are calculated using the unitary gauge thermal
propagators for the fermion,

S(p) = (/p+m)

�
1

p2 −m2
+ iΓf (p)

�
, (13)

and the gauge boson

Dµν(p) = (−gµν + pµpν/M2)

�
1

p2 −M2
+ iΓb(p)

�
.

(14)

The thermal parts are given by

Γf (p) = 2πδ(p2 −m2)ηf (p) , (15)

Γb(p) = 2πδ(p2 −M2)ηb(p) , (16)

respectively, with the distribution functions

ηf (p) = [e|p·u|/Ts + 1]−1 , (17)

ηb(p) = [e|p·u|/Ts − 1]−1 . (18)

The form of S(p) and Dµν(p) can be understood from
the fact that at finite temperature and density, there are
not only virtual νs and A� in the medium, but also real
particles that have been thermally excited.

The diagrams in Fig. 3 are given by

Σbubble(k) = −ie2χ

�
d4p

(2π)4
γµ PL iS(p+ k) γν iDµν(p) ,

(19)

Σtadpole(k) = ie2χγ
µ PL iDµν(0)

�
d4p

(2π)4
tr

�
γν PL iS(p)

�
.

(20)
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Here, we derive the dispersion relation for sterile neu-
trinos coupled to a U(1)χ gauge force in the regime of
nonzero temperature and density. Our approach closely
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From considerations of Lorentz invariance, the sterile
neutrino self energy at one-loop can be expressed as
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of the heat bath, so we take u = (1, 0, 0, 0).
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µ, where

eχ is the U(1)χ gauge coupling. At lowest order, Σ(k)
receives contributions from the bubble and tadpole dia-
grams shown in Fig. 3. In the real time formalism, these
diagrams are calculated using the unitary gauge thermal
propagators for the fermion,

S(p) = (/p+m)
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1

p2 −m2
+ iΓf (p)

�
, (13)

and the gauge boson

Dµν(p) = (−gµν + pµpν/M2)
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+ iΓb(p)
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(14)

The thermal parts are given by

Γf (p) = 2πδ(p2 −m2)ηf (p) , (15)

Γb(p) = 2πδ(p2 −M2)ηb(p) , (16)

respectively, with the distribution functions

ηf (p) = [e|p·u|/Ts + 1]−1 , (17)

ηb(p) = [e|p·u|/Ts − 1]−1 . (18)

The form of S(p) and Dµν(p) can be understood from
the fact that at finite temperature and density, there are
not only virtual νs and A� in the medium, but also real
particles that have been thermally excited.

The diagrams in Fig. 3 are given by

Σbubble(k) = −ie2χ
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(2π)4
γµ PL iS(p+ k) γν iDµν(p) ,
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Σtadpole(k) = ie2χγ
µ PL iDµν(0)
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d4p
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tr

�
γν PL iS(p)

�
.
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Dµν(p) = (−gµν)

�
1

p2 −M2
− iΓb(p)

� (There’s a typo in 
the arxiv version, 
and the journal 
version) 
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Since we are interested in the leading thermal corrections,
we evaluate only terms proportional to one power of Γf

or Γb.

The leading thermal contributions to the bubble dia-
gram are

e2χ

�
d4p

(2π)4
γµ(/k + /p)γ

νPL

�
− gµν +

pµpν
M2

�

×
�
iΓf (k + p)

p2 −M2
− iΓb(p)

(k + p)2 −m2

�
. (21)

We evaluate this expression by first using the δ-functions
in Γf and Γb to carry out the p0 integral. The remain-
ing 3-momentum integral can be evaluated in spherical
coordinates, with the z-axis defined by the direction of
k. In this coordinate system, the integral over the az-
imuthal angle is trivial, and the second angular integral
can be evaluated. We have checked that at this stage
our results agree with those of [52] if we neglect the con-
tributions of longitudinal polarization state of the gauge
boson, as these authors have done.

The remaining integral over |p| can be carried out nu-
merically, but we derive analytical approximations for
the two important limiting cases. In the limit of small
temperatures, |k|, Ts � M , we expand to leading order
in |p|/M , and obtain

b =
7e2χ|k|
6π2M4

� ∞

0
d|p| |p|3

�
ηf + ηf̄

�
(22)

=
7e2χ|k|π2T 4

s

45M4
. (23)

In the opposite limit of high temperature, |k|, Ts � M ,
we can drop subleading logarithmic terms in |p|, and the
linear term gives

b = −
e2χ

4π2|k|

� ∞

0
d|p| |p|

�
ηf + ηf̄ + 2ηb

�
(24)

= −
e2χT

2
s

8|k| . (25)

Note that the potential |b| � |k|, thus the neutrinos are
still ultrarelativistic, and we can replace |k| ≈ k0 = E,
inside the potential.

In terms of the U(1)χ fine-structure constant, αχ ≡
e2χ/(4π), we thus arrive at,

V bubble
eff �






−28π3αχET 4
s

45M4
for Ts, E � M

+
παχT 2

s

2E
for Ts, E � M

(26)

which is the result used in the main text.
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Figure 4. In analogy to Fig. 2, these plots show the depen-
dence of DM self-scattering constraints on the DM coupling
for a fixed DM mass mχ = 10TeV (top panel) and fixed gauge
boson mass M = 0.3MeV (bottom panel).

Similarly, calculating the tadpole diagram gives

V tadpole
eff � 2παχ

M2
(nf − nf̄ ) , (27)

in terms of terms of the number density of background
fermions. It is straightforward to see that Σtadpole(k)
vanishes when there is no fermion asymmetry. In this
work, we have assumed that νs does not have an asym-
metry, but instead consider the possibility that A� cou-
ples to asymmetric DM χ, with a net number density,
nχ − nχ̄, which can provide this potential.

Appendix B: Exploration of the parameter space

In Fig. 4 we show that the DM results, shown in the
main text, are valid over a reasonable range of values for

Usual MSW term. We could assume an asymmetry in sterile neutrinos. 
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Appendix A: Thermal Corrections to Self-Energy

Here, we derive the dispersion relation for sterile neu-
trinos coupled to a U(1)χ gauge force in the regime of
nonzero temperature and density. Our approach closely
follows [19, 20, 51, 52].

From considerations of Lorentz invariance, the sterile
neutrino self energy at one-loop can be expressed as

Σ(k) = (m− a/k − b/u)PL . (8)

Here, PL = (1 − γ5)/2 is a chirality projector, m is the
sterile neutrino mass, p is its 4-momentum and u is the
4-momentum of the heat bath. We work in the rest frame
of the heat bath, so we take u = (1, 0, 0, 0).

This thermal self-energy modifies the dispersion rela-
tion to

det(/k − Σ(k)) = 0 , (9)

which, in the ultrarelativistic regime, k0 ≈ |k|, gives

k0 = |k|+ m2

2|k| − b (10)

to linear order in the coefficients a and b. Note that the
usual dispersion relation for an ultrarelativistic neutrino,
k0 = |k|+ m2

2|k| , is modified by an effective potential

Veff ≡ −b . (11)

The coefficient b can then be obtained according to the
relation

b =
1

2k2

�
[(k0)2 − k2]tr /uΣ(k)− k0tr /kΣ(k)

�
. (12)

So, the remaining job is to calculate Σ(k).
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Figure 3. Bubble and tadpole contributions to the sterile neu-
trino self-energy, which create an effective “matter” potential.

We assume a Lagrangian Lint = eχf̄γµPLfA�
µ, where

eχ is the U(1)χ gauge coupling. At lowest order, Σ(k)
receives contributions from the bubble and tadpole dia-
grams shown in Fig. 3. In the real time formalism, these
diagrams are calculated using the unitary gauge thermal
propagators for the fermion,

S(p) = (/p+m)

�
1

p2 −m2
+ iΓf (p)

�
, (13)

and the gauge boson

Dµν(p) = (−gµν + pµpν/M2)

�
1

p2 −M2
+ iΓb(p)

�
.

(14)

The thermal parts are given by

Γf (p) = 2πδ(p2 −m2)ηf (p) , (15)

Γb(p) = 2πδ(p2 −M2)ηb(p) , (16)

respectively, with the distribution functions

ηf (p) = [e|p·u|/Ts + 1]−1 , (17)

ηb(p) = [e|p·u|/Ts − 1]−1 . (18)

The form of S(p) and Dµν(p) can be understood from
the fact that at finite temperature and density, there are
not only virtual νs and A� in the medium, but also real
particles that have been thermally excited.

The diagrams in Fig. 3 are given by

Σbubble(k) = −ie2χ

�
d4p

(2π)4
γµ PL iS(p+ k) γν iDµν(p) ,

(19)

Σtadpole(k) = ie2χγ
µ PL iDµν(0)

�
d4p

(2π)4
tr

�
γν PL iS(p)

�
.

(20)
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Since we are interested in the leading thermal corrections,
we evaluate only terms proportional to one power of Γf

or Γb.

The leading thermal contributions to the bubble dia-
gram are

e2χ

�
d4p

(2π)4
γµ(/k + /p)γ

νPL

�
− gµν +

pµpν
M2

�

×
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iΓf (k + p)

p2 −M2
− iΓb(p)

(k + p)2 −m2

�
. (21)

We evaluate this expression by first using the δ-functions
in Γf and Γb to carry out the p0 integral. The remain-
ing 3-momentum integral can be evaluated in spherical
coordinates, with the z-axis defined by the direction of
k. In this coordinate system, the integral over the az-
imuthal angle is trivial, and the second angular integral
can be evaluated. We have checked that at this stage
our results agree with those of [52] if we neglect the con-
tributions of longitudinal polarization state of the gauge
boson, as these authors have done.

The remaining integral over |p| can be carried out nu-
merically, but we derive analytical approximations for
the two important limiting cases. In the limit of small
temperatures, |k|, Ts � M , we expand to leading order
in |p|/M , and obtain

b =
7e2χ|k|
6π2M4

� ∞

0
d|p| |p|3

�
ηf + ηf̄

�
(22)

=
7e2χ|k|π2T 4

s

45M4
. (23)

In the opposite limit of high temperature, |k|, Ts � M ,
we can drop subleading logarithmic terms in |p|, and the
linear term gives

b = −
e2χ

4π2|k|

� ∞

0
d|p| |p|

�
ηf + ηf̄ + 2ηb

�
(24)

= −
e2χT

2
s

8|k| . (25)

Note that the potential |b| � |k|, thus the neutrinos are
still ultrarelativistic, and we can replace |k| ≈ k0 = E,
inside the potential.

In terms of the U(1)χ fine-structure constant, αχ ≡
e2χ/(4π), we thus arrive at,

V bubble
eff �






−28π3αχET 4
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45M4
for Ts, E � M

+
παχT 2

s

2E
for Ts, E � M

(26)

which is the result used in the main text.
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Figure 4. In analogy to Fig. 2, these plots show the depen-
dence of DM self-scattering constraints on the DM coupling
for a fixed DM mass mχ = 10TeV (top panel) and fixed gauge
boson mass M = 0.3MeV (bottom panel).

Similarly, calculating the tadpole diagram gives

V tadpole
eff � 2παχ

M2
(nf − nf̄ ) , (27)

in terms of terms of the number density of background
fermions. It is straightforward to see that Σtadpole(k)
vanishes when there is no fermion asymmetry. In this
work, we have assumed that νs does not have an asym-
metry, but instead consider the possibility that A� cou-
ples to asymmetric DM χ, with a net number density,
nχ − nχ̄, which can provide this potential.

Appendix B: Exploration of the parameter space

In Fig. 4 we show that the DM results, shown in the
main text, are valid over a reasonable range of values for

Purely thermal contribution. Exists even with no asymmetry. 
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Appendix A: Thermal Corrections to Self-Energy

Here, we derive the dispersion relation for sterile neu-
trinos coupled to a U(1)χ gauge force in the regime of
nonzero temperature and density. Our approach closely
follows [19, 20, 51, 52].

From considerations of Lorentz invariance, the sterile
neutrino self energy at one-loop can be expressed as

Σ(k) = (m− a/k − b/u)PL . (8)

Here, PL = (1 − γ5)/2 is a chirality projector, m is the
sterile neutrino mass, p is its 4-momentum and u is the
4-momentum of the heat bath. We work in the rest frame
of the heat bath, so we take u = (1, 0, 0, 0).
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We assume a Lagrangian Lint = eχf̄γµPLfA�
µ, where

eχ is the U(1)χ gauge coupling. At lowest order, Σ(k)
receives contributions from the bubble and tadpole dia-
grams shown in Fig. 3. In the real time formalism, these
diagrams are calculated using the unitary gauge thermal
propagators for the fermion,

S(p) = (/p+m)

�
1

p2 −m2
+ iΓf (p)

�
, (13)

and the gauge boson

Dµν(p) = (−gµν + pµpν/M2)

�
1

p2 −M2
+ iΓb(p)

�
.

(14)

The thermal parts are given by

Γf (p) = 2πδ(p2 −m2)ηf (p) , (15)

Γb(p) = 2πδ(p2 −M2)ηb(p) , (16)

respectively, with the distribution functions

ηf (p) = [e|p·u|/Ts + 1]−1 , (17)

ηb(p) = [e|p·u|/Ts − 1]−1 . (18)

The form of S(p) and Dµν(p) can be understood from
the fact that at finite temperature and density, there are
not only virtual νs and A� in the medium, but also real
particles that have been thermally excited.

The diagrams in Fig. 3 are given by

Σbubble(k) = −ie2χ

�
d4p

(2π)4
γµ PL iS(p+ k) γν iDµν(p) ,

(19)

Σtadpole(k) = ie2χγ
µ PL iDµν(0)

�
d4p

(2π)4
tr

�
γν PL iS(p)

�
.

(20)



Thermal MSW Potential 
2

ditional effective number of fully-thermalized neutrinos

at BBN, for a single left-handed sterile neutrino (and its

right-handed antineutrino) and a relativistic A�
, is

∆Nν ≡ ρνs + ρA�

ρν
=

(gνs + gA�)T 4
s

gν T 4
ν

(1)

=

�
7
8 × 2 + 3

�
×
�
10.75
106.7

� 4
3

�
7
8 × 2

�
×

�
4
11

� 4
3

� 0.5 , (2)

which is easily consistent with the bound from BBN, viz.,

∆Nν = 0.66+0.47
−0.45 [12]. Up to 3 generations of sterile

neutrinos could be accommodated within � 1σ. Note

that we have conservatively taken Tν at the end of BBN.

At lower temperatures, Ts � 0.1MeV, A�
becomes non-

relativistic, and decays to sterile neutrinos, heating them

up by a factor of � 1.4. However, these neutrinos with

masses m � 1 eV, are nonrelativistic by the epoch of

matter-radiation equality (Tγ � 0.7 eV) and recombina-

tion (Tγ � 0.3 eV). Thus the impact of thermal abun-

dances of A�
and νs on the CMB and structure formation

is negligible. See also [16–18] for alternate approaches.

We will now show that oscillations of active neutrinos into

sterile neutrinos, which are normally expected to bring

the two sectors into equilibrium again, are also strongly

suppressed due to “matter” effects.

The basic idea underlying our proposal is similar to the

high-temperature counterpart of the MSW effect. Let us

recall that at high temperatures, i.e., in the early Uni-

verse, an active neutrino with energy E experiences a

potential VMSW ∝ G2
FET 4

γ due to their own energy den-
sity [19]. This is not zero even in a CP symmetric Uni-

verse. A similar, but much larger, potential can be gen-

erated at high-temperature for sterile neutrinos, if they

couple to a light hidden gauge boson A�
. There are two

types of processes that can contribute to this potential

— the sterile neutrino can forward-scatter off an A�
in

the medium, or off a fermion f that couples to A�
.

These interactions of the sterile neutrino with the

medium modify its dispersion relation through a poten-

tial Veff :

E = |k|+ m2

2E
+ Veff , (3)

where E and |k| are the energy and momentum of the

sterile neutrino.

We calculated Veff using the real time formalism in

thermal field theory (see Appendix A). Physically, this

potential is the correction to the sterile neutrino self-

energy. In the low-temperature limit, i.e., Ts, E � M , we

find Veff � −28π3αχET 4
s /(45M

4
) , similar to the poten-

tial for active neutrinos [19], with αχ ≡ e2χ/(4π) being the
U(1)χ fine-structure constant. In the high-temperature

limit, Ts, E � M , we find Veff � +παχT 2
s /(2E) , similar

to the result for hot QED [20]. We have assumed that
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Figure 1. Comparison of the effective matter potential Veff

for sterile neutrinos (black curves) to the active–sterile os-
cillation frequency ∆m2/(2E) (green line) at E � Tγ and
∆m2 = 1 eV2. As long as |Veff| � ∆m2/(2E), oscillations
are suppressed. Different black curves show |Veff| for different
values of the gauge boson massM , with solid lines correspond-
ing to Veff > 0 and dashed lines indicating Veff < 0. Thin
(Thick) lines show exact numerical (approximate analytical)
results. The hidden sector fine-structure constant is taken as
αχ ≡ e2χ/(4π) = 10−2/(4π). Red lines show the contribution
to Veff from an asymmetric DM particle with mχ = 1 GeV.
The QCD phase transition and active neutrino decoupling
epochs are annotated. The small kinks in the curves are due
to changes in g∗, the effective number of degrees of freedom
in the Universe.

there is no asymmetry in νs, which may be interesting

to consider [16, 21]. These analytical results are plot-

ted in Fig. 1 (thick black lines). For comparison, we also

calculated the potential numerically (thin black lines),

and found excellent consistency with the analytical ap-

proximations in their region of validity. The potential is

small only in a very small range of temperatures Ts ≈ M ,

where the potential changes sign and goes through zero.

Note that the potential is always smaller that |k| and
vanishes at zero temperature.

In the presence of a potential, it is well-known that

neutrino mixing angles are modified. In the two-flavor

approximation, the effective mixing angle θm in matter

is given by [22]

sin
2
2θm =

sin
2
2θ0�

cos 2θ0 +
2E

∆m2Veff

�2
+ sin

2
2θ0

, (4)

where θ0 is the vacuum mixing angle, and ∆m2
= m2

s −
m2

a is the difference between the squares of the mostly

sterile mass eigenstate ms and the active neutrino mass

scale ma. If the potential is much larger than the vacuum

If M <  10 MeV the thermal potential can be large  

Dasgupta and Kopp (2014) 
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which is easily consistent with the bound from BBN, viz.,

∆Nν = 0.66+0.47
−0.45 [12]. Up to 3 generations of sterile

neutrinos could be accommodated within � 1σ. Note

that we have conservatively taken Tν at the end of BBN.

At lower temperatures, Ts � 0.1MeV, A�
becomes non-

relativistic, and decays to sterile neutrinos, heating them

up by a factor of � 1.4. However, these neutrinos with

masses m � 1 eV, are nonrelativistic by the epoch of

matter-radiation equality (Tγ � 0.7 eV) and recombina-

tion (Tγ � 0.3 eV). Thus the impact of thermal abun-

dances of A�
and νs on the CMB and structure formation

is negligible. See also [16–18] for alternate approaches.

We will now show that oscillations of active neutrinos into

sterile neutrinos, which are normally expected to bring

the two sectors into equilibrium again, are also strongly

suppressed due to “matter” effects.

The basic idea underlying our proposal is similar to the

high-temperature counterpart of the MSW effect. Let us

recall that at high temperatures, i.e., in the early Uni-

verse, an active neutrino with energy E experiences a

potential VMSW ∝ G2
FET 4

γ due to their own energy den-
sity [19]. This is not zero even in a CP symmetric Uni-

verse. A similar, but much larger, potential can be gen-

erated at high-temperature for sterile neutrinos, if they

couple to a light hidden gauge boson A�
. There are two

types of processes that can contribute to this potential

— the sterile neutrino can forward-scatter off an A�
in

the medium, or off a fermion f that couples to A�
.

These interactions of the sterile neutrino with the

medium modify its dispersion relation through a poten-

tial Veff :

E = |k|+ m2

2E
+ Veff , (3)

where E and |k| are the energy and momentum of the

sterile neutrino.

We calculated Veff using the real time formalism in

thermal field theory (see Appendix A). Physically, this

potential is the correction to the sterile neutrino self-

energy. In the low-temperature limit, i.e., Ts, E � M , we

find Veff � −28π3αχET 4
s /(45M

4
) , similar to the poten-

tial for active neutrinos [19], with αχ ≡ e2χ/(4π) being the
U(1)χ fine-structure constant. In the high-temperature

limit, Ts, E � M , we find Veff � +παχT 2
s /(2E) , similar

to the result for hot QED [20]. We have assumed that
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Figure 1. Comparison of the effective matter potential Veff

for sterile neutrinos (black curves) to the active–sterile os-
cillation frequency ∆m2/(2E) (green line) at E � Tγ and
∆m2 = 1 eV2. As long as |Veff| � ∆m2/(2E), oscillations
are suppressed. Different black curves show |Veff| for different
values of the gauge boson massM , with solid lines correspond-
ing to Veff > 0 and dashed lines indicating Veff < 0. Thin
(Thick) lines show exact numerical (approximate analytical)
results. The hidden sector fine-structure constant is taken as
αχ ≡ e2χ/(4π) = 10−2/(4π). Red lines show the contribution
to Veff from an asymmetric DM particle with mχ = 1 GeV.
The QCD phase transition and active neutrino decoupling
epochs are annotated. The small kinks in the curves are due
to changes in g∗, the effective number of degrees of freedom
in the Universe.

there is no asymmetry in νs, which may be interesting

to consider [16, 21]. These analytical results are plot-

ted in Fig. 1 (thick black lines). For comparison, we also

calculated the potential numerically (thin black lines),

and found excellent consistency with the analytical ap-

proximations in their region of validity. The potential is

small only in a very small range of temperatures Ts ≈ M ,

where the potential changes sign and goes through zero.

Note that the potential is always smaller that |k| and
vanishes at zero temperature.

In the presence of a potential, it is well-known that

neutrino mixing angles are modified. In the two-flavor

approximation, the effective mixing angle θm in matter

is given by [22]

sin
2
2θm =

sin
2
2θ0�

cos 2θ0 +
2E

∆m2Veff

�2
+ sin

2
2θ0

, (4)

where θ0 is the vacuum mixing angle, and ∆m2
= m2

s −
m2

a is the difference between the squares of the mostly

sterile mass eigenstate ms and the active neutrino mass

scale ma. If the potential is much larger than the vacuum

3

oscillation frequency, i.e.,

|Veff| �

����
∆m

2

2E

���� , (5)

then θm will be tiny, and oscillations of active neutrinos
into sterile ones are suppressed.

This is confirmed by Fig. 1, which summarizes our
main results. For a typical neutrino energy E ∼ Tγ

and M � 10 MeV, we see that condition (5) is well-
satisfied down to temperatures Tγ � 1 MeV, i.e., until
after the time of neutrino decoupling, when their thermal
production becomes impossible. Thus θm is suppressed
and sterile neutrinos are not produced in significant num-
bers. There is also non-forward scattering of sterile neu-
trinos mediated by the hidden gauge boson, as well as
the usual MSW potential for active neutrinos, which fur-
ther suppress oscillations. A full numerical calculation
using quantum kinetic equations [23] is consistent with
our simple estimate using condition (5). Oscillations af-
ter decoupling reduces a small fraction, sin2 2θm � 0.1, of
the active neutrinos to steriles (which are nonrelativistic
below 1 eV), consistent with Neff = 3.30+0.54

−0.51 (95% lim-
its) from cosmological data [13]. Note that in Fig. 1, we
have conservatively taken sterile neutrino decoupling to
occur at the same temperature, Tγ � 1 MeV, as the de-
coupling of active neutrinos. In reality, sterile neutrino
production ceases when Γs ∼ sin2 θsG2

FT
5
γ drops below

the Hubble expansion rate H ∝ T
2
γ , which happened at

temperatures around 1 MeV/(sin2 θ)1/3.

Even for M slightly larger than 1 MeV, sterile neutrino
production remains suppressed until the BBN epoch, but
it is interesting that in this case Veff crosses zero while
neutrinos are still in thermal equilibrium. This implies
that there is a brief time-period during which sterile neu-
trinos could be produced efficiently. However, as long as
its duration is much shorter than inverse of the sterile
neutrino production rate Γ−1

s ∼ [sin2 θsG2
FT

5
γ ]

−1, only
partial thermalization of sterile neutrinos will occur. In-
terestingly, at the MSW resonance, i.e., ∆m

2 � −2EVeff ,
one may get some active-to-sterile neutrino (or antineu-
trino) conversion, depending on the adiabaticity of this
resonance. This implies that, for M � 10 MeV, we pre-
dict a fractional value of ∆Neff at BBN. A study of the
detailed dynamics during this epoch is beyond the scope
of our present work.

As a final remark, we would like to emphasize that,
while Fig. 1 is for E = Tγ , it is important to keep in
mind that active neutrinos follow a thermal distribution.
We have checked that even for E different from Tγ , the
value of Veff does not change too much. Therefore, our
conclusions regarding the suppression of sterile neutrino
production remain valid even when the tails of the ther-
mal distribution are taken into account.

COUPLING TO DARK MATTER

If a new gauge force of the proposed form exists, it
is conceivable that not only sterile neutrinos, but also
DM particles, χ, couple to it. This of course leads to
an additional contribution 2παχ(nχ − nχ̄)/M2 to Veff ,
through forward scattering off the net DM density (see
Appendix A). As long as DM is CP-symmetric, we have
nχ − nχ̄ = 0 and this extra contribution vanishes. Even
for asymmetric DM [24], we see in Fig. 1 (red lines) that
it is usually subleading for mχ � 1GeV.
The extra gauge interaction of DM does, however, lead

to DM self-scattering, which has received considerable at-
tention recently as a way of solving [25–27] the existing
disagreement between the observed substructure of DM
in the Milky Way and N-body simulations of galaxy for-
mation. In particular, self-interacting DM can solve the
“too big to fail” problem [28, 29], i.e., the question why
very massive DM subhaloes that are predicted to exist in
a Milky Way type galaxy have not been observed, even
though one would expect star formation to be efficient in
them and make them appear as luminous dwarf galax-
ies. Similarly, DM self-interactions could be the reason
why the Milky Way appears to have fewer dwarf galax-
ies than expected from simulations (the “missing satel-
lites” problem [30]). Finally, it may be possible to ex-
plain why the observed DM density distribution in Milky
Way subhaloes appears to be exhibit a constant density
core [31, 32] rather than a steep cusp predicted in N-
body simulations [33] (“cusp vs. core problem”). While
all these problems could well have different explanations
— for instance the impact of baryonic feedback on N-
body simulations is not yet well understood — it is in-
triguing that the self-scattering cross sections predicted
in the scenario discussed here has exactly the right prop-
erties to mitigate these small-scale structure issues.
In our model, the “energy transfer cross section” in

the center of mass frame, σT =
�
dΩ dσ/dΩ(1− cos θ), is

given in Born approximation by [34]

σT �
8πα2

χ

m2
χv

4
rel

�
log(1 +R

2)−
R

2

1 +R2

�
, (6)

with R ≡ mχvrel/M . Here, vrel is the relative velocity
of the two colliding DM particles. It is easy to see that
σT is velocity independent for vrel � M/mχ and drops
roughly ∝ v

−4
rel for larger vrel � M/mχ. This implies that

the velocity-averaged cross section per unit DM mass,
�σT � /mχ, can be of order 0.1–1 cm2/g in galaxies (vrel ∼
O(100 km/sec)), as required to mitigate the small-scale
structure problems [26, 27], while remaining well below
this value in galaxy clusters (vrel ∼ O(1000 km/sec)),
from which the most robust constraints are obtained [35].
The cross section given in eq. (6) becomes inaccurate in
the limit αχmχ/M > 1, and one needs to take nonper-
turbative/resonant effects into account. In computing

No production by oscillations.  Also thermalization rate is similarly suppressed. 
 
Neff is increased by ~0.5 due to sterile neutrinos at BBN (much less at CMB) 

Dasgupta and Kopp (2014) 



Some Comments 

•  Detailed dynamics should consider MSW 
resonances 

•  Adiabaticity effects 
•  Non-forward scattering processes 
•  Sterile neutrino decoupling is slightly earlier 

than 1 MeV due to mixing angle suppression 
•  Tails of the thermal distribution 
•  V << T, so relativistic approximation holds 



Full QKE 

In what follows we will refer δm2
s > 0 as the normal hierarchy scenario (NH) and δm2

s < 0
as the inverted hierarchy scenario (IH). Structure formation data strongly disfavour models
with a total thermalised neutrino mass (the sum of all fully thermalised mass states) in
excess of 0.5-1 eV. Given that all the active states are fully thermalised this disfavours the
inverted hierarchy for sterile masses above 0.2-0.3 eV. However, for masses below this the
inverted hierarchy is not disfavoured and for completeness we study the same mass and
mixing parameter space for both NH and IH.

In order to describe the evolution of sterile neutrinos in the early universe, we use the
density matrix formalism and we express the density matrix associated with each momentum
p in terms of the Bloch vector components (P0,P) = (P0, Px, Py, Pz) [40, 41, 43],

ρ =
1

2
f0(P0 +P · σ) , ρ =

1

2
f0(P 0 +P · σ) , (2.3)

where σ are the Pauli matrices and f0 = 1/(1+ep/T ) is the Fermi-Dirac distribution function
with no chemical potential. The neutrino kinetic equations in terms of the components of
the Bloch vectors for each momentum mode are:

Ṗ = V ×P−D(Pxx+ Pyy) + Ṗ0z , (2.4)

Ṗ0 = Γ

[
feq
f0

−
1

2
(P0 + Pz)

]
(2.5)

where the dot denotes the time derivative (dt = ∂t −Hp∂p, with H the Hubble parameter)
and feq = 1/(1 + e(p−µ)/T ).

Defining the comoving momentum x = p/T , the vector V has the following components

Vx =
δm2

s

2xT
sin 2θs , (2.6)

Vy = 0 , (2.7)

Vz = V0 + V1 + VL. (2.8)

and

V0 = −
δm2

s

2xT
cos 2θs, (2.9)

V (a)
1 = −

7π2

45
√
2

GF

M2
Z

xT 5 [nνa + nν̄a] ga (2.10)

VL =
2
√
2ζ(3)

π2
GFT

3L(a). (2.11)

Here, gµ,τ = 1 for νµ,τ–νs mixing, ge = 1 + 4 sec2 θW/(nνe + nν̄e) for νe–νs mixing and θW is
the Weinberg angle. The dimensionless number densities nνa,(ν̄a) are the equilibrium active
neutrino (antineutrino) densities normalised to unity in thermal equilibrium. The effective
neutrino asymmetries L(a) are defined by

L(e) =

(
1

2
+ 2 sin2 θW

)
Le +

(
1

2
− 2 sin2 θW

)
Lp −

1

2
Ln + 2Lνe + Lνµ + Lντ , (2.12)

L(µ) = L(e) − Le − Lνe + Lνµ , (2.13)

L(τ) = L(e) − Le − Lνe + Lντ , (2.14)

– 3 –

Besides oscillations, scattering processes also taken into account. 
The scattering rate is   

where Lf ≡ (nf − nf̄ )Nf/Nγ with Nf (Nγ) the integrated active (photon) number density
in thermal equilibrium. The potential VL, defined as in Eq. (2.11), is the leading order
contribution to Vz. The V1 term is the finite temperature correction and for example in the
case of νe–νs mixing it includes coherent interactions of νe with the medium through which
it propagates. The condition for a matter induced resonance to occur is Vz = 0, and because
Vz depends on L(a) any non-zero lepton asymmetry can have dramatic consequences for
oscillation driven active-sterile neutrino conversion. In Appendix A we discuss the location
of resonances in detail for all possible values of mass, mixing, and lepton asymmetry.

A detailed derivation of the quantum kinetic equations is presented in [42, 46]. Here
we choose to adopt minimal assumptions on the collision terms. In particular, the term D is
the damping term, quantifying the loss of quantum coherence due to νa collisions with the
background medium. For example, considering νe, the elastic contribution should come from
the elastic scattering of νe with e− and e+ and with the other active flavours νa and ν̄a. The
inelastic contribution comes from the scattering of νe with ν̄e (producing e− and e+ or νa and
ν̄a). In terms of the Bloch vectors such terms have the effect of suppressing the off-diagonal
elements of the density matrix (Px,y). The effective potentials contributing to this term have
been previously calculated [46–48] and if thermal equilibrium is aasumed and the electron
mass neglected, it is approximately half the corresponding scattering rate Γ [40, 42, 49]

D =
1

2
Γ . (2.15)

The evolution of P0 is determined by processes that deplete or enhance the abundance
of νa with the same momentum and its rate of change receives no contribution from coherent
νa-νs oscillations. The repopulation term Γ(feq/f0 − 1/2(P0 + Pz)) is an approximation for
the correct elastic collision integral [49] with

Γ = CaG
2
FxT

5 (2.16)

where Ce # 1.27 and Cµ,τ # 0.92 [41]. Note that the term including the effective collision rate,
Γ, is an approximation to the full momentum dependent scattering kernel which repopulates
neutrinos from the background plasma. The full expression has been derived in [42]. In [49] it
was proven that the general form of D (and Γ) exactly reduces to Eqs. (2.15,2.16) for weakly
interacting species in thermal equilibrium with zero chemical potential, and that it is the zero
order approximation for particles with non-null chemical potential. The respective equations
of motion for anti-neutrinos can be found by substituting L(a) = −L(a) and µ = −µ in the
above equations. In our treatment we have not included the rate equations for the electrons
and positrons since we are assuming that all the species electromagnetically interacting are
kept in equilibrium.

2.2 Mapping with the active and the sterile variables

We can distinguish among large and small linear combinations of the dynamical variables in
the particle and antiparticle sector to simplify the numerical treatment. For each momentum
mode, we define for each component i (with i = 0, x, y, z) of the Bloch vector

P±
i = Pi ± P i . (2.17)

– 4 –

where Lf ≡ (nf − nf̄ )Nf/Nγ with Nf (Nγ) the integrated active (photon) number density
in thermal equilibrium. The potential VL, defined as in Eq. (2.11), is the leading order
contribution to Vz. The V1 term is the finite temperature correction and for example in the
case of νe–νs mixing it includes coherent interactions of νe with the medium through which
it propagates. The condition for a matter induced resonance to occur is Vz = 0, and because
Vz depends on L(a) any non-zero lepton asymmetry can have dramatic consequences for
oscillation driven active-sterile neutrino conversion. In Appendix A we discuss the location
of resonances in detail for all possible values of mass, mixing, and lepton asymmetry.

A detailed derivation of the quantum kinetic equations is presented in [42, 46]. Here
we choose to adopt minimal assumptions on the collision terms. In particular, the term D is
the damping term, quantifying the loss of quantum coherence due to νa collisions with the
background medium. For example, considering νe, the elastic contribution should come from
the elastic scattering of νe with e− and e+ and with the other active flavours νa and ν̄a. The
inelastic contribution comes from the scattering of νe with ν̄e (producing e− and e+ or νa and
ν̄a). In terms of the Bloch vectors such terms have the effect of suppressing the off-diagonal
elements of the density matrix (Px,y). The effective potentials contributing to this term have
been previously calculated [46–48] and if thermal equilibrium is aasumed and the electron
mass neglected, it is approximately half the corresponding scattering rate Γ [40, 42, 49]

D =
1

2
Γ . (2.15)

The evolution of P0 is determined by processes that deplete or enhance the abundance
of νa with the same momentum and its rate of change receives no contribution from coherent
νa-νs oscillations. The repopulation term Γ(feq/f0 − 1/2(P0 + Pz)) is an approximation for
the correct elastic collision integral [49] with

Γ = CaG
2
FxT

5 (2.16)

where Ce # 1.27 and Cµ,τ # 0.92 [41]. Note that the term including the effective collision rate,
Γ, is an approximation to the full momentum dependent scattering kernel which repopulates
neutrinos from the background plasma. The full expression has been derived in [42]. In [49] it
was proven that the general form of D (and Γ) exactly reduces to Eqs. (2.15,2.16) for weakly
interacting species in thermal equilibrium with zero chemical potential, and that it is the zero
order approximation for particles with non-null chemical potential. The respective equations
of motion for anti-neutrinos can be found by substituting L(a) = −L(a) and µ = −µ in the
above equations. In our treatment we have not included the rate equations for the electrons
and positrons since we are assuming that all the species electromagnetically interacting are
kept in equilibrium.

2.2 Mapping with the active and the sterile variables

We can distinguish among large and small linear combinations of the dynamical variables in
the particle and antiparticle sector to simplify the numerical treatment. For each momentum
mode, we define for each component i (with i = 0, x, y, z) of the Bloch vector

P±
i = Pi ± P i . (2.17)

– 4 –

Hansen, Hannestad, Tram (2014) 
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3

log(GX/GF )

lo
g(

g X
)

−1 0 1 2 3
−2

−1.5

−1

−0.5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

FIG. 2: Contours of equal thermalization. ∆Neff is given by
the colors. The solid, dashed, and dot-dashed lines correspond
to hidden bosons with masses MX = 300MeV, 200MeV, and
100 MeV respectively.
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FIG. 3: Dependence of∆Neff on the mixing parameters. gX =
0.01 has been used for all the models while GX has been
changed to give the variation in mass.

system and θm is the in-medium mixing angle (see e.g.
[17, 18] for a discussion of this in the context of active
neutrinos). Γ is entirely dominated by the interaction via
X so that Γ ∝ G2

X and the in-medium mixing angle is
likewise dominated by the potential generated by the new
interaction so that sin2(2θm) ∝ 1/V 2

s ∝ M4
X/G2

X leading
to the sterile thermalization rate being proportional to
M4

X , i.e. Γt does not depend on gX , only on MX .

The determination of mixing parameters from acceler-
ator experiments is quite uncertain, and it is therefore in-
teresting to know how our results would be affected if we
changed the vacuum mixing angle or the mass difference.
The results of such a variation are seen in Fig. 3. Re-
garding the ability to inhibit thermalization, the results
do not change much. A somewhat higher or lower mass
will be needed for the hidden boson, but ∆Neff = 0.6 can
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FIG. 4: The sterile energy distribution relative to f0 at T =
4.3 MeV, where ∆Neff crosses 1 for δm2 = 1 eV2, sin2(2θ) =
0.05, GX = GF , and gX = 0.01 which corresponds to MX =
2.9 GeV. Note that the peak at p/T < 1 is unimportant due
to the limited phase space for so low p.

for example be reached by using MX = 100MeV even at
δm2 = 10 eV2. There are, however, two other interesting
observations. First, note that when the hidden boson
mass is high, ∆Neff decreases with decreasing sin2(2θ)
or δm2 - the well known limit for non-interacting sterile
neutrinos (see e.g. [9, 16]). As the boson mass is lowered,
the new interaction first permits full thermalization of the
sterile neutrino before we reach the mass range where the
new interaction inhibits the thermalization.

The other interesting observation is that ∆Neff > 1 for
some values of MX . At first this seems very puzzling and
counterintuitive. In a model with only oscillations and no
new interactions this would be impossible since the num-
ber density and energy density of the sterile neutrinos
could never exceed the densities of the active neutrinos,
the net production of steriles would simply shut off as
soon as ρss ∼ f0. However, in the model presented here
there are two effects at play simultaneously: The produc-
tion of steriles due to oscillations and the redistribution
of sterile states due to the new interaction. If the redistri-
bution of energy is sufficiently fast it can keep ρss < f0,
allowing for more production of steriles. Fig. 4 provides
an illustration of the effect by showing a snapshot of the
distributions at the point where ∆Neff crosses 1 for a
model with MX = 2.3 GeV. Sterile neutrinos are still
being produced in the region close to the resonance at
p/T ≈ 5 since f0 > ρss and oscillations therefore popu-
late sterile neutrinos from the active sector. At the same
time ρss continues to grow at lower p/T due to the redis-
tribution of states. In total this means that ∆Neff is still
growing and will do so until the resonance has moved to
very high p/T where f0 becomes very small or the ac-
tive neutrinos decouple from the electrons. Naively we
would expect ∆Neff to be highest for low values of MX

For  ~100 MeV boson 
One can easily suppress  
N_eff to below 0.5 

Hansen, Hannestad, Tram (2014) 



Post-BBN Thermalization 
3

FIG. 1: Neutrino refractive and collisional rates (normalized in terms of the Hubble rate) versus temperature T for gX = 0.1.
Left panel corresponds to GX = 108 GF and MX = 1.2 MeV, while right panel to GX = 1010 GF and MX = 0.12 MeV. The
curves correspond to the active-sterile vacuum term (solid curve), the secret matter potential for ρss = 10−1 (dotted curve), and
the production rate Γt associated with G2

X , assuming a sterile neutrino abundance from vacuum oscillations (dashed curve).

collisional effects. As shown in [24, 25], the combination
of precession and damping can lead to different behaviors
depending on the relative strength of the two effects.
In particular, when the typical oscillation rate (t−1

osc),
collision rate (t−1

coll) and the expansion rate of the universe
(H), obey the hierarchy t−1

osc ! t−1
coll ! H the damping

term would lead to PT = 0, with the system evolving
towards the flavor equilibrium. Namely, starting with a
pure active flavor state, corresponding to ρ = diag(1, 0),
the final density matrix would be ρ = diag(1/2, 1/2) with
both active and sterile states equally populated. The av-
eraged relaxation rate to reach this chemical equilibrium
is [9, 24]

Γt " 〈P (να → νs)〉collΓX , (7)

where 〈P (να → νs)〉coll is the conversion probability of
an active into a sterile neutrino averaged over a collision
time scale. Notice that this rate is non zero as soon as
an initial sterile neutrino density is produced when the
matter term becomes of the order of the vacuum oscil-
lation frequency. This initial sterile abundance is again
proportional to the conversion probability. Thus Γt is, at
first, proportional to the square of 〈P (να → νs)〉coll.
In the following we will show that the conditions for

flavor equilibrium are always fulfilled at T & 1 MeV,
leading to a copious sterile neutrino production.

III. STERILE NEUTRINO PRODUCTION BY
DAMPING

In Fig. 1 we show the behavior of the different neutrino
refractive and collisional rates normalized to the Hubble
rate H(T ), versus photon temperature T (see [4] for de-
tails). For the sake of illustration, we show the quantity

of Eq. (2)-(5) averaged over thermal Fermi-Dirac distri-
butions. Results are shown for gX = 10−1. Left panel is
for GX = 108 GF and MX = 1.2 MeV, while right panel
corresponds to GX = 1010 GF and MX = 0.12 MeV.
We show the active-sterile vacuum term (solid curve)
and the secret matter potential (dotted curve) assuming
ρss = ns/na = 10−1 , an indicative value when ster-
ile neutrinos are about to be excited. We note that for
T > MX the real form of the matter potential would de-
viate from the contact structure of Eq. (3) used in the
Figure (see [6]). In particular, for T " MX the potential
would vanish, leading to a possible production of νs when
this condition is fulfilled. However, since the duration
of this phase is expected to be shorter than the inverse
of the sterile neutrino production rate Γ−1

t , for simplic-
ity we neglect this possible (small) extra-contribution of
sterile neutrinos. In the left panel a resonance would take
place at T " 3 × 10−2 MeV, while in the right panel at
T " 7× 10−3 MeV. This resonance excites sterile states.

In principle one should perform numerical simulations
in a (3+1) scheme in order to calculate the resonant ster-
ile neutrino abundance and the further flavor evolution.
However, in the presence of the very large matter poten-
tial and collisional term, induced by the secret interac-
tions, these would be computationally demanding. More-
over, our main argument is not related to the details of
the corresponding dynamics. Therefore, for simplicity we
assume that the resonance is completely non-adiabatic,
so we have to take into account only the vacuum produc-
tion of sterile neutrinos at lower temperatures when the
matter term becomes smaller than the vacuum oscillation
term, associated with ∆m2

st. This is a very conservative
assumption. However, it allows us to easily compute the
flavor evolution and is enough to show the role of the
damping term.

Mirizzi, Mangano, Pisanti, Saviano (2014) 

For  ~1 MeV boson, 
one equilibrates sterile  
and active neutrinos through  
collisional decoherence 
 
In some cases tension with 
mass bounds L 

Speaker’s note added: This constraint rules out almost all parameter space except two 
regions at M~1 MeV and g~10^-4 and at M ~ 0.1 MeV with g~0.1 (less obvious).   



Comments 

•  Detailed dynamics should consider MSW 
resonances 

•  Adiabaticity effects 
•  Non-forward scattering processes 
•  Sterile neutrino decoupling is slightly earlier 

than 1 MeV due to mixing angle suppression 
•  Tails of the thermal distribution 
•  V << T, so relativistic approximation holds 



Take Away # 2: 
“Gauged”-sterile can avoid the bounds. 



Unintended Consequences 



Core-vs.-Cusp 
10 Oh et al.

Fig. 6.— Left: The rotation curve shape of DG1 and DG2 as well as the 7 THINGS dwarf galaxies. The dark matter rotation curves (corrected for
baryons as shown in Fig. 4) are scaled with respect to the rotation velocity V0.3 at R0.3 where the logarithmic slope of the curve is dlogV/dlogR = 0.3
(Hayashi & Navarro 2006). The small dots indicate the NFW model rotation curves with V200 ranging from 10 to 90 km s−1. See text for further
details. The best fitted pseudo-isothermal halo models (denoted as ISO) are also overplotted. See Section 4.2 for more details. Right: The scaled
dark matter density profiles of DG1 and DG2 as well as the 7 THINGS dwarf galaxies. The profiles are derived using the scaled dark matter rotation
curves in the left panel. The small dots represent the NFW models (α∼−1.0) with V200 ranging from 10 to 90 kms−1. The dashed lines indicate
the best fitted pseudo-isothermal halo models (α∼0.0). See Section 4.3 for more details.

estimate M200 as follows,

M200 [M#]=200×
3H2

0

8πG
×

4πR3
200

3

" 100×
H2

0

G
× (

V200

10H0
)3

" 3.29× 105 × V 3
200, (3)

where H0 is the Hubble constant (70.6 kms−1Mpc−1;
Suyu et al. 2010), G is the gravitational constant (4.3×
10−3 pcM−1

# km2 s−2) and V200 in km s−1 is the rotation
velocity at radius R200 as given in Eq. 1. However, the
NFW halo model fails to fit the dark matter rotation
curves of the THINGS dwarf galaxies, giving negative
(or close to zero) c values (Oh et al. 2011). To circum-
vent the unphysical fits, we instead fit the NFW model to
the rotation curves with only V200 as a free parameter af-
ter fixing c to 5 which is lower than typical values (e.g.,
8–9; McGaugh et al. 2003) predicted from ΛCDM cos-
mology. The fitted V200 values of some galaxies are larger
than their measured maximum rotation velocities. This
is because the rotation curves are still rising at the last
measured points. Moreover, as a larger c value induces
a smaller V200 and hence lower halo mass, our choice
of a low c will provide a robust upper limit for our de-
rived halo mass, as indicated by the arrows in Fig. 5. As
shown in Fig. 5, despite the uncertainties remaining in
these estimates, the stellar masses of DG1 and DG2 at
their given halo masses are consistent with those of real
galaxies. Both the real galaxies and the simulations de-
viate from the extrapolated line from the Mstar−Mhalo
relation in Guo et al. (2010) at low halo masses. How-
ever, as discussed in Trujillo-Gomez et al. (2010), there
still remain uncertainties for dwarfs in the sense that the
observational data suffer from small number statistics

and the results of abundance matching are incomplete in
the low-luminosity tail of the luminosity function.

4.2. The rotation curve shape

The rotation curve reflects the total potential (dark
matter + baryons) of the galaxy and thus it is directly
related to the radial matter distribution in the galaxy
(and vice versa). Consequently, the cusp–like dark mat-
ter distributions in the CDM halos impose a unique shape
on the rotation curves, which steeply rise at the inner
regions. Therefore, a relative comparison of galaxy ro-
tation curves between the simulations and observations
can serve as a useful constraint for testing the ΛCDM
simulations.
In this context, we compare the rotation curves of DG1

and DG2 with those of the THINGS dwarf galaxies. In
order to accentuate their inner shapes, we scale the ro-
tation curves of both the simulations and the THINGS
dwarf galaxies with respect to the velocity V0.3 at the
radius R0.3 where the logarithmic slope of the curve is
dlogV/dlogR = 0.3 (Hayashi & Navarro 2006). At the
scaling radius R0.3, the rotation curves of both simula-
tions and the observations are well resolved, which allows
any differences between them to show up.
The scaled rotation curves, with the kinematic contri-

bution of baryons subtracted, are shown in the left panel
of Fig. 6. We overplot the scaled rotation curves of NFW
CDM halos (dark-matter-only) with different maximum
rotation velocities ranging from 10 to 350 km s−1. We
choose c values of ∼9 and ∼8 for dwarf and disk galaxies
respectively, which in turn provide V200 values ranging
from ∼10 to ∼90 km s−1, and ∼100 to ∼350 km s−1,
respectively. Considering that the rotation velocities of
DG1, DG2 and the THINGS dwarf galaxies at the out-

Profiles of dwarf spheroidal 
galaxies don’t seem to fit with 
that predicted by CDM 
simulations. 
 
Observed galaxies have cores, 
where cusps are predicted. 

Moore (1994); Flores and Primack (1994) 

Oh et al. (2010) 



Missing Satellites 
dozens seen

“Via Lactea” Simulation

1000’s of satellites predicted

Pan-ANDromeda Archeological Survey 
(PAndAS)

The “Missing Satellites” Problem

dozens seen

“Via Lactea” Simulation

1000’s of satellites predicted

Pan-ANDromeda Archeological Survey 
(PAndAS)

The “Missing Satellites” Problem

Factor ~100 fewer MW-satellite galaxies seen 

Via Lactea simulation PAndAS Survey 

Klypin et al. (1999); Moore et al. (1999) 



Too Big to Fail 

Boylan-Kolchin, Kaplinghat, Bullock (2010) 

Where are the massive dwarfs??? 



How to address these problems? 

•  Baryonic effects (Reionization, SN Feedback,…, 
Tidal stripping…) 
– DM core creation + Tidal stripping (TBTF) 
– Faint galaxies + Reionization (only MSP) 

•  Yukawa interactions of DM (can’t solve MSP) 
•  DM-neutrino interactions (strong constraints) 
•  … 
 



A DM-Neutrino Connection 

Assume that the new force couples to DM as well (coupling is taken to be same) 
 
No new parameters are introduced. 

Self-Interaction Scattering 

Two new processes are automatically expected 

L = eχχγµχA
�
µ + eννsγµνsA

�
µ

A’ A’ 



A Neutrino-tempered DM  

Distance from Center of Halo 

H
al

o 
D

en
si

ty
 Flattening due to  

self-interactions 

Halo Mass 

N
(>

M
) 

Power at small-scales 
cut-off by nu-DM interaction 

Core-Cusp problem solved  
using self-interactions.  
TBTF is also solved.  

Missing Satellites solved using DM 
interactions with neutrinos, that 
leads to late kinetic decoupling 

Van den Aarssen, Bringmann, Pfrommer (2012); Dasgupta and Kopp (2014) 



Smoothening DM Cusps 

Dwarf-sized halos do not have cusps due to DM-DM 
interactions mediated by A’. 
 
What one needs is then DM-DM scattering cross 
section at the level of 0.1 cm^2 / g for velocities of 
dwarf galaxies (10 km/s). 
 
 
This is easily achieved by having a light mediator A’ that 
enhances the cross section. 

Feng,  Kaplinghat, Tu, Yu (2009); Loeb and Weiner (2011) 



Explaining the Missing Satellites 

The sterile neutrino-DM scattering keeps DM in kinetic 
equilibrium until somewhat later (Tχ/mχ nν σνχ) ~ H 
 
This erases structure at the smallest scales, and the 
smallest (dwarf) halos never form. 
 
 
What one needs is then M_cut ~ 10^9 solar masses or 
so. 
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Figure 2. Constraints on DM self-interactions from the re-
quirements that the self-interaction in galaxy clusters is small,
i.e., �σT �/mχ � 1 cm2/g, and that production of 1 eV ster-
ile neutrinos is suppressed, i.e., sin2 2θm � 10−3 at Tγ =
1MeV. We also show the favored parameter region for mit-
igating the cusp vs. core and too big to fail problems, i.e.,
�σT �/mχ = 0.1 − 1 cm2/g in dwarf galaxies, and solving the
missing satellites problem (Mcut = 109−10 MSun). The kink
in the σT contours is from an approximate treatment of the
regime between the Born and classical limits.

�σT �, we take the analytical expressions for σT for sym-
metric DM, as summarized in [36], and convolve with a
DM velocity distribution, that we take to be of Maxwell-
Boltzmann form, with velocity dispersion vrel.

As for the missing satellites problem, it was shown
in [37–39] that DM–neutrino scattering can decrease the
temperature of kinetic decoupling of DM, Tkd, which
can increase the cut-off in the structure power spectrum,
Mcut ∝ T−3

kd , to the scales of the dwarf galaxies. Tkd is de-
termined by equating the DM momentum relaxation rate
∼ (Ts/mχ)nχσχs with the Hubble expansion rate. Here,
nχ ∼ T 3

s is the DM number density, and σχs ∼ T 2
s /M

4 is
the DM–sterile neutrino scattering cross section. Quan-
titatively [38],

Mcut

MSun
� 3.2× 1013 α

3
2
χ

�
Ts

Tγ

� 9
2

kd

�
TeV

mχ

� 3
4
�
MeV

M

�3

.

(7)

In previous literature, the exponent of Ts/Tγ in eq. (7) is
sometimes incorrectly given as 3/2 [40]. We find the cut-
off can be raised to Mcut = 109 − 1010 MSun, as required
to solve the missing satellites problem. The number of
sterile neutrino generations Ns, assumed to be 1 here,

only weakly impacts the result as Mcut ∝ N3/4
s . Note

that in contrast to Ref. [38], we obtain a small Ts/Tγ ,
from decays of heavy Standard Model particles after the
decoupling of the sterile sector.

In Fig. 2, we show the region of parameter space fa-
vored by these considerations (see also Appendix B). We
see that it is possible to simultaneously mitigate the cusp
vs. core problem, too big to fail problem, as well as
the missing satellites problem, while remaining consis-
tent with the cluster constraint and simultaneously sup-
pressing sterile neutrino production to evade BBN and
CMB constraints. The potentially interesting solution to
all the enduring problems with small-scale structures was
first shown in a scenario with active neutrinos [38], which
has since been constrained using laboratory data, BBN,
and large-scale structure [41–43]. A qualitative exten-
sion to sterile neutrinos was suggested therein, and we
see here that such a scenario may be realized with no
conflict with cosmology.

The DM relic abundance may be produced by
Sommerfeld-enhanced annihilations of DM into A� pairs
that decay to sterile neutrinos, or alternatively through
an asymmetry. However, unlike in [38], we do not use
separate couplings of DM and ν to do this, so this should
identify the preferred value for DM mass in the range
mχ ∼ 1 − 100TeV. As long as DM chemical freeze-out
happens well above Tγ ∼GeV and the sterile neutrinos
have time to rethermalize with ordinary neutrinos (and
photons) via high-scale interactions, our scenario remains
unaltered by DM annihilation.

DISCUSSION AND SUMMARY

We now discuss the possible origin of a new gauge force
in the sterile neutrino sector, and on further phenomeno-
logical consequences. In [44], Pospelov has proposed
a model with sterile neutrinos charged under gauged
baryon number. He has argued that the model is con-
sistent with low energy constraints, in particular the one
from K → ππνν, even for κ2 sin θ/M2 ∼ 1000GF . This
is precisely the parameter region in which sterile neutrino
production in the early Universe is suppressed, as we have
demonstrated above. In [44–46], the phenomenological
consequences of this model have been investigated, and
it has been shown that strong anomalous scattering of
solar neutrinos in DM detectors is expected. As an alter-
native to gauged baryon number, sterile neutrinos could
also be charged under a gauge force that mixes kinetically
with the photon [45]. In this case, M � 10 MeV is pre-
ferred unless the coupling constants are extremely tiny.
Once again in this model interesting solar neutrino sig-
nals in DM detectors can occur. Finally, while we have
focused here on new gauge interactions, it is also con-
ceivable that the new interaction is instead mediated by
a scalar [47, 48]. However, in this case σχs ∝ m2

νs
, which

is too small and the missing satellite problem cannot be
solved.

In summary, we have shown that eV-scale sterile neu-
trinos can be consistent with cosmological data from

One needs a spin-1 mediator for this to work. Scalars lead to a small effect. 

Boehm, Fayet, Schaeffer (2000); Loeb and Zaldarriaga (2005) 



Addressing the TBTF problem 

Dwarf-sized subhalos inside MW 
do not have cusps due to DM-
DM interactions mediated by A’. 
 
What one needs is then DM-DM 
scattering cross section at the 
level of 0.1 cm^2 / g for 
velocities of dwarf galaxies (10 
km/s). This is the same condition 
as that for solving the core-cusp 
problem.  
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Figure 2. Constraints on DM self-interactions from the re-
quirements that the self-interaction in galaxy clusters is small,
i.e., �σT �/mχ � 1 cm2/g, and that production of 1 eV ster-
ile neutrinos is suppressed, i.e., sin2 2θm � 10−3 at Tγ =
1MeV. We also show the favored parameter region for mit-
igating the cusp vs. core and too big to fail problems, i.e.,
�σT �/mχ = 0.1 − 1 cm2/g in dwarf galaxies, and solving the
missing satellites problem (Mcut = 109−10 MSun). The kink
in the σT contours is from an approximate treatment of the
regime between the Born and classical limits.

�σT �, we take the analytical expressions for σT for sym-
metric DM, as summarized in [36], and convolve with a
DM velocity distribution, that we take to be of Maxwell-
Boltzmann form, with velocity dispersion vrel.

As for the missing satellites problem, it was shown
in [37–39] that DM–neutrino scattering can decrease the
temperature of kinetic decoupling of DM, Tkd, which
can increase the cut-off in the structure power spectrum,
Mcut ∝ T−3

kd , to the scales of the dwarf galaxies. Tkd is de-
termined by equating the DM momentum relaxation rate
∼ (Ts/mχ)nχσχs with the Hubble expansion rate. Here,
nχ ∼ T 3

s is the DM number density, and σχs ∼ T 2
s /M

4 is
the DM–sterile neutrino scattering cross section. Quan-
titatively [38],
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In previous literature, the exponent of Ts/Tγ in eq. (7) is
sometimes incorrectly given as 3/2 [40]. We find the cut-
off can be raised to Mcut = 109 − 1010 MSun, as required
to solve the missing satellites problem. The number of
sterile neutrino generations Ns, assumed to be 1 here,

only weakly impacts the result as Mcut ∝ N3/4
s . Note

that in contrast to Ref. [38], we obtain a small Ts/Tγ ,
from decays of heavy Standard Model particles after the
decoupling of the sterile sector.

In Fig. 2, we show the region of parameter space fa-
vored by these considerations (see also Appendix B). We
see that it is possible to simultaneously mitigate the cusp
vs. core problem, too big to fail problem, as well as
the missing satellites problem, while remaining consis-
tent with the cluster constraint and simultaneously sup-
pressing sterile neutrino production to evade BBN and
CMB constraints. The potentially interesting solution to
all the enduring problems with small-scale structures was
first shown in a scenario with active neutrinos [38], which
has since been constrained using laboratory data, BBN,
and large-scale structure [41–43]. A qualitative exten-
sion to sterile neutrinos was suggested therein, and we
see here that such a scenario may be realized with no
conflict with cosmology.

The DM relic abundance may be produced by
Sommerfeld-enhanced annihilations of DM into A� pairs
that decay to sterile neutrinos, or alternatively through
an asymmetry. However, unlike in [38], we do not use
separate couplings of DM and ν to do this, so this should
identify the preferred value for DM mass in the range
mχ ∼ 1 − 100TeV. As long as DM chemical freeze-out
happens well above Tγ ∼GeV and the sterile neutrinos
have time to rethermalize with ordinary neutrinos (and
photons) via high-scale interactions, our scenario remains
unaltered by DM annihilation.

DISCUSSION AND SUMMARY

We now discuss the possible origin of a new gauge force
in the sterile neutrino sector, and on further phenomeno-
logical consequences. In [44], Pospelov has proposed
a model with sterile neutrinos charged under gauged
baryon number. He has argued that the model is con-
sistent with low energy constraints, in particular the one
from K → ππνν, even for κ2 sin θ/M2 ∼ 1000GF . This
is precisely the parameter region in which sterile neutrino
production in the early Universe is suppressed, as we have
demonstrated above. In [44–46], the phenomenological
consequences of this model have been investigated, and
it has been shown that strong anomalous scattering of
solar neutrinos in DM detectors is expected. As an alter-
native to gauged baryon number, sterile neutrinos could
also be charged under a gauge force that mixes kinetically
with the photon [45]. In this case, M � 10 MeV is pre-
ferred unless the coupling constants are extremely tiny.
Once again in this model interesting solar neutrino sig-
nals in DM detectors can occur. Finally, while we have
focused here on new gauge interactions, it is also con-
ceivable that the new interaction is instead mediated by
a scalar [47, 48]. However, in this case σχs ∝ m2

νs
, which

is too small and the missing satellite problem cannot be
solved.

In summary, we have shown that eV-scale sterile neu-
trinos can be consistent with cosmological data from

One can explain Neff , Neutrino Oscillations, and All 3 DM problems, simultaneously  

Dasgupta and Kopp (2014), see also follow up by Bringmann, Hasenkamp, Kersten (2014)  



A Connection to PeV Neutrinos Some results:

Cherry, Friedland, and Shoemaker (to appear) 
Similar ideas in:  Ioka and Murase (2014), Ng and Beacom (2014) 

Can lead to depletion of HE events around a PeV at IceCube 



Take Away # 3: 
Interesting astrophysical signatures 

 



Summary 

1. Strong cosmological bounds on a well-mixed 
light sterile neutrino.  
 
2. Minor extensions to sterile neutrinos can avoid 
the cosmological bounds on dark radiation. 
 
3. Hidden charged sterile neutrinos can explain DM 
behavior at small-scales, etc. 
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We show that a scalar and a fermion charged under a global U(1) symmetry can not only explain
the existence and abundance of dark matter (DM) and dark radiation (DR), but also imbue DM
with improved scattering properties at galactic scales, while remaining consistent with all other
observations. Delayed DM-DR kinetic decoupling eases the missing satellites problem, while scalar-
mediated self-interactions of DM ease the cusp vs. core and too big to fail problems. In this scenario,
DM is expected to be pseudo-Dirac and have a mass 100 keV � mχ � 10GeV. The predicted DR
may be measurable using the primordial elemental abundances from big bang nucleosynthesis (BBN),
and using the cosmic microwave background (CMB).

PACS numbers: 95.35.+d

Introduction.– Cosmological and astrophysical data
now firmly point towards the existence of new nonrela-
tivistic particles, dubbed dark matter (DM), and there is
a vigorous experimental program underway to discover
these particles and measure their properties. Dark radi-
ation (DR), on the other hand, refers to new relativis-
tic particles that contribute to the cosmological energy
density but are otherwise decoupled from ordinary mat-
ter and radiation. There is neither clear evidence nor
a definitive exclusion, but several independent analyses
of cosmological data show tantalizing hints for DR [1–5],
most recently to reconcile the results from Planck [6] with
those from BICEP2 [7].

Candidate particles for DR have been motivated by ex-
perimental results, e.g., additional neutrinos that explain
oscillation anomalies, or to address conceptual problems
in the visible sector, e.g., thermal axions that solve the
strong CP problem. On the other hand, DR may have
little to do with the observed particles in the Universe
and instead may simply be light particles in the dark sec-
tor, e.g., as in refs. [8–12]. Weinberg recently presented a
set-up [13], where the Goldstone bosons of a global sym-
metry in the dark sector lead to dark radiation, while
the residual symmetry provides stability to a fermionic
DM candidate. Its phenomenology has been explored in
subsequent works [14–19]. In this Letter, we show that if
DM and DR share this common origin, it may naturally
solve long-standing problems in DM structure-formation.

A weakly interacting massive particle explains the cos-
mological abundance of DM, but there are hints from
observations of dwarf galaxies and the Milky-Way that
something may be lacking in this description. N-body
simulations of collisionless cold DM [20] predict numer-
ous dwarf satellite galaxies of the Milky-Way, that are
not seen, viz., the missing satellites problem [21]. They
also predict cuspy halos in dwarf galaxies where cores
are observed [22, 23], viz. the cusp vs. core problem, and

highly massive subhalos of Milky-Way-type galaxies that
would be expected to host stars, but which aren’t ob-
served, viz., the too big to fail problem [24]. It has been
considered that inclusion of more detailed astrophysi-
cal processes [25–29], e.g., supernova feedback, low star-
formation, tidal effects, etc., or new DM physics [30–34],
e.g., self-interactions, warm DM, decays/annihilations,
or DM-“baryon” coupling etc., can solve some of these
problems. Exotic interactions between DM and ordinary
matter, e.g., neutrinos [35] or sterile neutrinos [36] may be
able to address all these persistent problems. However,
almost all models invoke additional physics specifically
to address the small-scale problems.

We show that (i) DM scattering off the DR bath, com-
posed of the Goldstone bosons of the global symmetry,
leads to delayed kinetic decoupling that erases the least
massive DM halos, which can mitigate the missing satel-
lites problem, and (ii) DM self-scattering mediated by
the scalar mode leads to smoothening of the inner cusps
of small galactic halos, which alleviates the cusp vs. core
and too big to fail problems. Together, they can ease
all tensions between observations and cold DM simula-
tions, with no need for any other particles or interactions.
Simultaneously, the observed DM density and all other
constraints can be satisfied, which predicts an observable
abundance of DR and the viable DM mass-range.

In the following, we demonstrate the above mechanism.
We show how the small-scale problems may be addressed,
and elaborate the consequences for DR and DM. We out-
line the phenomenology of this scenario, and conclude
with a discussion and a summary of our results.

Dark Matter and Dark Radiation.– We consider
the Lagrangian for the dark sector [13, 15],

Ldark � ∂µφ
∗∂µφ+ µ2

φ|φ|
2 − λφ|φ|

4

+ iχ̄γµ∂µχ−M χ̄χ− (
fd√
2
φχTCχ+ h.c.), (1)

Complex Scalar 

Fermion 

On spontaneous symmetry breaking  
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where φ is a complex scalar and χ is a 4-component
fermion, both charged under a global U(1) symmetry.
After symmetry-breaking, φ ≡ (vφ + ρ + iη)/

√
2 has a

vacuum expectation value vφ. Its CP-odd component
η becomes a massless Goldstone field while its CP-even
component ρ remains. At the same time, the last term in
Eq. (1) splits the fermion field into two mass eigenstates
χ± with massesmχ

±
= |M±fdvφ|. The obvious Z2 resid-

ual symmetry, i.e., χ± → −χ± and (ρ, η) → (ρ, η), guar-
antees that the lighter mass eigenstate, which we take to
be χ

−
, is stable, and therefore a viable DM candidate.

Relativistic dark particles, e.g., the massless Goldstone
mode η, yield DR.

We will be interested in DM and DR scattering pro-
cesses mediated by the χ−φ interaction in Eq. (1), which,
after symmetry breaking, is rewritten as

− fd

2
ρ(χ̄

−
χ

−
− χ̄

+
χ

+
)− fd

2
η(χ̄

+
χ

−
+ χ̄

−
χ

+
) . (2)

We will show that when χ
−
and χ

+
are quasi-degenerate,

i.e., mχ
+
−mχ

−
≡ ∆mχ � mχ, the scattering processes

can be appreciable and important. However, before we
get to that, let’s consider the cosmological abundance of
DR and DM in this scenario.

The temperatures of the dark and the visible sectors
are defined to be the temperatures of the bath of η and
photons (denoted by γ), respectively. We will assume
that T� is a temperature above which the dark sector was
in thermal equilibrium with the visible sector. This may
have been through processes common to both sectors at
high-scale, e.g., inflaton decay. Below this temperature,
the two sectors are decoupled but the conservation of
entropy relates the temperatures in the two sectors as

Tη =

�
g
∗
d(T�)

g
∗
d(Tη)

g
∗
v(Tγ)

g
∗
v(T�)

�1/3

Tγ , (3)

where g
∗(T ) are the effective number of relativistic de-

grees of freedom in the dark (d) and visible (v) sectors,
respectively, at their temperatures T . Typically, the fac-
tor in brackets is slightly smaller than 1, and Tη � Tγ .

The DR density is given by relativistic particles in
the dark sector, i.e., ρDR = π

2
g
∗
dT

4
η /30, which is con-

veniently parametrized as an additional number of neu-
trinos species,

∆Nν ≡ ρDR

ρν
=

4g∗d
7

�
Tη

Tν

�4

, (4)

using the known energy density ρν of a single flavor of
an active neutrino at temperature Tν .

The DM density is set by its chemical freeze-out. In
the regime of our interest (where ∆mχ � mχ) the DM
chemical freeze-out is determined by the co-annihilation
process χ

+
χ

−
→ ρ η, with the co-annihilation cross sec-

χ− χ−

η η

χ+ χ+

χ− χ−

η η

χ− χ−

η η

ρ

Figure 1. DM-DR scattering via u, s, and t channels.

tion approximately given by [15],

�σv� � α
2
dπ

m
2
χ

, (5)

where αd = f
2
d/(4π). The contribution from all other

channels are p-wave suppressed and subleading. The ob-
served DM fraction ΩDM = 0.11h−2 is obtained, depend-
ing on the details of g∗d,v at the temperature of freeze-

out, for �σv� � (2 − 5) × 10−26 cm3
/s [37]. We take

�σv� = 3×10−26 cm3
/s as an illustrative value. Note that

the observed ΩDM needs fd � 1, which self-consistently
motivates the smallness of ∆mχ (≡ 2fdvφ), without fine-
tuning.

Scattering in the Dark Sector.– The DM particle
χ

−
scatters with DR, i.e., the massless pseudoscalar η,

through the processes shown in Fig. 1. The cross section
for DM-DR scattering is

σηχ
−
=

8πα2
dω

4

∆m
6
χ

�
1 +

16∆m
2
χ

3m2
ρ

+
8∆m

4
χ

m
4
ρ

�
, (6)

in the limit of ∆mχ � mχ and where ω is the energy of
η in the center-of-mass frame, roughly Tη. One can see
that a small ∆mχ enhances the DM-DR scattering.

DM remains in kinetic equilibrium with DR until the
momentum exchange rate due to this process becomes
smaller than the Hubble expansion rate [33, 38], i.e.,
(Tη/mχ)nη�σηχ

−
� ∼ H(Tγ) , where nη = 3ζ(3)T 3

η /(4π
2)

is the DR number density. The above condition de-
termines the temperature of kinetic decoupling, Tkd ≡
Tγ |kd. We have

Tkd � 0.5 keV
δ

10−4.5

�
mχ

GeV

�7/6�10−4

αd

�1/3

ξ
−4/3
kd , (7)

where δ ≡ ∆mχ/mχ is the fractional mass difference, and
ξkd ≡ (Tη/Tγ)|kd, which is in the range of (0.5 − 0.8).
DM-DR scattering can lower Tkd, which enhances the
acoustic damping cutoff, Mcut, in the structure power
spectrum. Quantitatively [39], we have Mcut � 1.7 ×
108 (Tkd/keV)

−3
M⊙, such that Tkd � 0.5 keV, ensures

the smallest DM halos are larger than about 109M⊙,
which eases the missing satellites problem [40].

DM particles can scatter with each other via χ
−
χ

−
↔

χ
−
χ

−
, mediated by the scalar ρ. The t and u channel

amplitudes dominate the self-scattering due to the small-
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Residual Z2 symmetry ensures χ- = DM is stable  

Also η = DR 
Weinberg (2013) 
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