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A Concrete Example: Bai and Tait (arXiv:1208.4361) proposed a
simple weak gauge-broken operator for dark matter (DM)
production at the LHC:

1
Λ2 (χ̄γµχ) (ūγµu + ξ d̄γµd)

At the parton level, this operator characterizes the process
u(p1)d̄(p2)→ χ(k1)χ̄(k2) + W+(q), as shown in the diagrams
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Figure : M1 and M2 amplitudes for the mono-W process
u(p1)d(p2)→ χ(k1)χ(k2)W+(q), in the effective field theory framework.



Bai and Tait note that the mono-W process is unique among the
mono-X processes, in its ability to probe different DM couplings to
u and d quarks.

Their operator is very popular (many citations), and has been used
by ATLAS and CMS in analysis and publication:

• G. Aad et al. (ATLAS Collaboration), Phys.Rev.Lett. 112,
041802 (2014), arXiv:1309.4017 [hep-ex]

• G. Aad et al. (ATLAS Collaboration), JHEP 1409, 037 (2014),
arXiv:1407.7494 [hep-ex]

• CMS-Collaboration(2013), CMS-PAS-EXO-13-004

• V. Khachatryan et al. (CMS Collaboration)(2014),
arXiv:1408.2745 [hep-ex]



Clearly, the operators is SU(2)L-invariant (u ↔ d) only for ξ = 1.
For general ξ, it is NON-invariant.
The claim is that for ξ < 1, there is an interference between M1

and M2 which can greatly enhance the rate of DM production.
As I will now explain, we see this differently:

1. The
(
vev
Λ

)n
suppression.

2. Goldstone boson equivalence and the Ward identity.
4. The role of the longitudinal mode WLong .
3. Leading s behavior and unitarity.

Our arguments apply to all weak gauge NON-Invariant operators.
Examples are (χ̄Γχ)×
(a) for scalar mediators (integrated out),
(ūLuR + ūRuL) independent of (u → d);
(b) for vector mediators (integrated),
(ūLγ

µuL + ūRγ
µuR) 6= (u → d).

(Also, applies to nuclear isospin-breaking models, but these may
still apply at direct detection energies (keV) ).



1. The
(
vev
Λ

)n
suppression.

Operators which are non-invariant under the weak symmetry must
vanish as the weak vev → 0. Thus, there is one or more implicit
powers of vev in the operator (“Wilson”) coefficient.
Thus, there is a suppression

(
vev
Λ

)n
, making the operator

magnitude compete with higher dim ops.
The operator is significantly suppressed above the EW scale
∼ vev ∼ 250 GeV.
For example, the (ūLuR + ūRuL) operator is manifestly not SU(2)L
invariant, as uL is a weak doublet and uR is a singlet. This costs
one power of

(
vev
Λ

)
.

As another example, (ūLγ
µuL + ūRγ

µuR) 6= (uL → dL) costs two
powers of

(
vev
Λ

)
, one for each mismatched u ↔ d .

The vev serves to instill quantum numbers of a weak doublet.



The equivalence of the vev as a weak doublet happens because the
vev is a remnant of the SU(2)L scalar doublet

Φ ≡

(
φ+

φ0 = 1√
2

(H + vev + i=φ0)

)
. (1)

Enough powers of Φ are required to form an SU(2)L-invariant
operator. The fields φ± and =φ are gauged away to become, in
unitary gauge, the longitudinal modes of the W± and Z . So, it is
the real, neutral field 1√

2
(H + vev) whose nth power appears in the

operator. Commonly, the H part of the expression is omitted,
leaving just an implicit vevn in the coefficient. Dimensionally, the
vevn comes with a Λ−n.

We remark that omission of the H part in the operator may ignore
some interesting phenomenology.



2. Goldstone boson equivalence and the Ward identity.
Since the two amplitudes of Figure 1, with ξ 6= 1, are not gauge
invariant, they will not satisfy the relevant Ward Identity.
At high energy, the Goldstone boson equivalence theorem requires
that the amplitude for emission of a longitudinally polarized WL is
equivalent to that for the emission of the corresponding Goldstone
boson. Since the Goldstone boson couples to quarks with strength
proportional to their mass, these terms are close to zero. The
Ward identity for the longitudinal W at high energy therefore takes
the form

MαεLα ≈
qα
mW
Mα(q, ...) = iM(φ+(q)) ' 0. (2)

For the sum of the mono-W amplitudes of Fig.1 we find

qαMα =
gW
Λ2

[
v̄(p2) (1− ξ) γµ

PL√
2
u(p1)

]
[ū(k1)γµv(k2)] , (3)

which clearly vanishes only for ξ = 1.



3. The role of the longitudinal mode, WLong .
The three polarization vectors for the W or Z bosons are
orthogonal to the particle four-momentum, qµ = (q0; 0, 0, |~q|). We
may choose this basis to be εµTx = (0; 1, 0, 0, ), εµTy = (0; 0, 1, 0, ),

and εµLong = (|~q|; 0, 0, q0, )/MV . The polarization sum for the
vector bosons is∑

λ ε
λ
αε
λ ∗
β = −gαβ +

qαqβ
m2

W
. The contribution of the transverse

components are straightforward, leaving the subtlety, the
qαqβ
m2

W

term, to subtract an unphysical piece from gαβ that arises from the
growing longitudinal mode. In fact, this longitudinal mode may be

written as εµLong = ( |~q|;0,0,q
0,

MV
) = qµ

MV
− ( MV

q0+|~q|)(1; 0, 0, 1)

which makes it clear that at high-energy, εµLong approaches ( qµ

MV
).

This result leads to two important observations:
First, that no high-energy longitudinal W is included in the
previous operator, since current conservation argues against a qµ

insertion onto an external fermion leg, for any value of ξ.
So why does the operator calculation get a large enhancement?
Precisely because the polarization sum

∑
λ ε

λ
αε
λ ∗
β = −gαβ +

qαqβ
m2

W



is used, incorrectly, for what should be a sum on just two
transverse polarizations,

∑
T ε

T
αε

T ∗
β = diag(0, 1, 1, 0). For ξ = 1,

gauge invariance leads to the correct cancellations to allow the
previous insertion, but for ξ 6= 1, just the sum on transverse
polarizations should be used.
The Second observation is that gauge invariance as given by a UV
completion would yield a growing longitudinal W mode, but it
would come from an internal brehmstrahlung process, as shown in
a UV-completion model with an SU(2)-doublet, scalar particle
called η, which must carry the same quantum numbers, color
triplet, weak doublet, hyper charge 1/6, as the QL doublet:
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Figure : Contributions to the mono-W process in a UV complete model.



The vector W must couple derivatively to the η, which means it
will couple to the mass-squared difference of the two components
of the η-doublet, which in turn means proportional to the weak
vev2. It all works out, but now with an additional

(
vev
Λ

)2

suppression. BTW, a mass splitting of the η components is easily
arranged in the model, via the term λ4(Φ†η)(η†Φ), which upon

SSB becomes λ4
vev2

2 η2
d .

In this UV-completed, renormalizable model, ξ = (1 + λ4
vev2

2 )−1,
which shows that negative ξ is not possible in this model, and
more importantly, that for Λ & 1 TeV and a perturbative value for
λ4, ξ will not deviate far from 1.
(In progress, a look at mixing of new neutral vector with the
(Z , γ) system, in spirit of theorem that in contrast to scalars,
vectors can be repulsive as well as attractive; may get negative
contribution to ξ, but ....)



3. Leading s behavior and unitarity.

The Optical Theorem (e.g., Itzykson and Zuber) implies that
asymptotically, |Melastic(s)| < 16π t

t0
(ln(s))2. Froissart generalized

this result to the total cross section. So eventually, an s2 behavior,
coming from the longitudinal W mode in a gauge non-invariant
model, cannot be sustained. The issue is, when in energy does the
EFT break down. I show some plots relevant to this issue (for

simplicity, we have taken
M2

χ

s to be zero):
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Figure : Total parton-level cross sections versus energy, for Λ = 600 GeV
and various ξ. Upper: contribution from the +qαqβ/m

2
W term in the

polarization sum. The cross section scales simply as (1− ξ)2. Lower:
contribution from the −gαβ term. At LHC energies the qαqβ terms
dominates unless ξ ' 1. The separation into σ1 and σ2 is accomplished
in the unitary gauge.
(Notice the differing vertical scales between the two panels.)
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Figure : Total parton-level cross sections for Λ = 600 GeV, for particular
choices of ξ. Solid lines are the analytic calculation and dots are the
MadGraph calculation.



We find for the leading behavior in s,
σTOT = σ1 + σ2 → s

Λ4 (1 + (1− ξ)2 s
M2

W
), with the extra power in s

coming from σ2, i.e. from the longitudinal mode of the W . It is
this extra power of s that warns us that the weak gauge-violating
operator with ξ 6= 1 is to be cut off at the weak scale, here,
s ∼ M2

W . For pp physics at the LHC, this would imply cutting off

the parton fractional energies above x1x2 ∼
M2

W
sLHC

, i.e. at ∼ 10−4

for the
√
s = 7 TeV run, and at 4 times that for the

√
s = 13 TeV

run.



In summary, we have argued that any SU(2)-violating difference in
the u and d quark couplings must be protected by the EW scale,
and therefore cannot be arbitrarily large.

Furthermore, we have shown that spurious terms associated with
the longitudinal mode of the W would grow large enough to
violate unitarity at high-energies. But even at lower energy, their
presence appears to be problematic for the Ward identity. These
spurious longitudinal W couplings are avoided only by using a
renormalizable UV-completed theory, rather than weak
gauge-breaking EFT operators.
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