Testing GR with Cosmology

Pedro Ferreira Oxford

I

Collaborators

- Tessa Baker (Oxford)
- Stefano Camera (IST)
- Tim Clifton (QMW)
- Ed Macaulay (Oxford/Sussex)
- Tony Padilla (Nottingham)
- Mario Santos (UWC)
- Constantinos Skordis (Nottingham)
- Joseph Zuntz (Manchester)

The Large Scale Structure of the Universe

3

Planck

SDSS

I992 (COBE): $n_s = 1 \pm 0.6$ 2001 (Max+Boom): $n_s = 1.03 \pm 0.09$ 2009 (WMAP5): $n_s = 0.963 \pm 0.014$ 2013 (Planck+): $n_s = 0.9603 \pm 0.0073$

Outline

- the panorama of gravitation
- the cosmological arena
- cosmological linear perturbations
- what data to look at
- the future

Einstein Gravity

Lovelock's theorem (1971) :"The only second-order, local gravitational field equations derivable from an action containing solely the 4D metric tensor (plus related tensors) are the Einstein field equations with a cosmological constant."

"I think the best viewpoint is to pretend there are experiments and calculate. In this field we are not pushed by experiments- we must be pulled by imagination"

R. Feynman

GRI: Chapel Hill 1957

Friday, 24 January 14

9

Today Life on earth Acceleration Dark energy dominate Solar system forms Star formation peak Galaxy formation era Earliest visible galaxies

Recombination Atoms form Relic radiation decouples (CMB)

Matter domination Onset of gravitational collapse

Nucleosynthesis Light elements created – D, He, Li Nuclear fusion begins

Quark-hadron transition Protons and neutrons formed

Electroweak transition Electromagnetic and weak nuclear forces first differentiate

Supersymmetry breaking

Axions etc.?

Grand unification transition Electroweak and strong nuclear forces differentiate

Inflation Quantum gravity wall

Spacetime description breaks down

Friday, 24 January 14

An agnostic view: lessons from PPN

(Will, Nordvedt & Thorne)

Lessons from PPN

		γ	β	ξ	a 1	a 2	a 3	ζ1	ζ2	ζ3	ζ4
netric Tensor Tensor	Einstein (1916) GR	1	1	0	0	0	0	0	0	0	0
	Bergmann (1968), Wagoner (1970)	γ	β	0	0	0	0	0	0	0	0
	Nordtvedt (1970), Bekenstein (1977)	γ	β	0	0	0	0	0	0	0	0
	Brans-Dicke (1961)	γ	1	0	0	0	0	0	0	0	0
	Hellings-Nordtvedt (1973)	γ	β	0	α1	a ₂	0	0	0	0	0
	Will-Nordtvedt (1972)	1	1	0	0	a 2	0	0	0	0	0
	Rosen (1975)	1	1	0	0	$c_0/c_1 - 1$	0	0	0	0	0
	Rastall (1979)	1	1	0	0	α2	0	0	0	0	0
Bii	Lightman-Lee (1973)	γ	β	0	Q 1	α2	0	0	0	0	0
ories <pre> </pre>	Lee-Lightman-Ni (1974)	ac ₀ / c ₁	β	ξ	Q 1	α2	0	0	0	0	0
	Ni (1973)	ac ₀ / c ₁	bc ₀	0	α1	α2	0	0	0	0	0
	Einstein (1912) {Not GR}	0	0	0	-4	0	-2	0	-1	0	0
	Whitrow-Morduch (1965)	0	-1	0	-4	0	0	0	-3	0	0
	Rosen (1971)	λ		0	- 4 - 4λ	0	-4	0	-1	0	0
	Papetrou (1954a, 1954b)	1	1	0	-8	-4	0	0	2	0	0
The	Ni (1972) (stratified)	1	1	0	-8	0	0	0	2	0	0
Scalar Field	Yilmaz (1958, 1962)	1	1	0	-8	0	-4	0	-2	0	-1
	Page-Tupper (1968)	γ	β	0	- 4 - 4γ	0	– 2 – 2y	0	ζ2	0	ζ4
	Nordström (1912)	-1	β	0	0	0	0	0	0	0	0
	Nordström (1913), Einstein-Fokker (1914)	-1	1	0	0	0	0	0	0	0	0
	Ni (1972) (flat)	-1	1 – q	0	0	0	0	0	ζ2	0	0
	Whitrow-Morduch (1960)	-1	1 – q	0	0	0	0	0	q	0	0
	Littlewood (1953), Bergman(1956)	-1	β	0	0	0	0	0	-1	0	0

Scalar-

Vector-Tensor

Stratified

Lessons from PPN

Parameter Bound		Effects	Experiment	
γ-1	2.3 x 10 ⁻⁵	Time delay, light deflection	Cassini tracking	
β – 1	2.3 x 10 ⁻⁴	Nordtvedt effect, Perihelion shift	Nordtvedt effect	
ξ	0.001	Earth tides	Gravimeter data	
α_1	10 - 4	Orbit polarization	Lunar laser ranging	
α_2	4 x 10 ⁻⁷	Spin precession	Solar alignment with ecliptic	
α_3	4 x 10 ^{- 20}	Self-acceleration	Pulsar spin- down statistics	
ζ1	0.02	-	Combined PPN bounds	
ζ2	4 x 10 ⁻⁵	Binary pulsar acceleration	PSR 1913+16	
ζ3	10 - 8	Newton's 3rd law	Lunar acceleration	
ζ4	0.006	-	Usually not independent	

The Universe: background cosmology

$$ds^2 = a^2 \gamma_{\mu\nu} dx^{\mu} dx^{\nu}$$
 FRW equations

$$G_{\alpha\beta} = 8\pi G T_{\alpha\beta} \qquad \longrightarrow \qquad \mathcal{H}^2 = \frac{8\pi G}{3} a^2 \rho$$

<u>Any</u> theory (modified gravity or otherwise)

$$G_{\alpha\beta} = 8\pi G T_{\alpha\beta} + U_{\alpha\beta}$$

$$\longrightarrow \qquad \rho_X(\tau), P_X(\tau)$$

The Universe: background cosmology

The Universe: large scale structure

Linear Perturbation Theory $(10 - 10,000h^{-1}Mpc)$

$$ds^2 = a^2(\gamma_{\mu\nu} + h_{\mu\nu})dx^{\mu}dx^{\nu}$$

Diffeomorphism invariance —

Gauge invariant Newtonian potentials

 $(\hat{\Phi}, \hat{\Psi})$

 $\hat{\Gamma} = \frac{1}{k} \left(\dot{\hat{\Phi}} + \mathcal{H} \hat{\Psi} \right)$

$$\rho \to \rho(\tau)[1 + \delta(\tau, \mathbf{r})]$$

$$\delta G_{\alpha\beta} = 8\pi G \delta T_{\alpha\beta}$$

$$\begin{split} \delta G_{00}^{(gi)} &: \ 2\vec{\nabla}^{2}\hat{\Phi} - 6\mathcal{H}k\hat{\Gamma} = 8\pi Ga^{2}\rho\delta^{(gi)} \\ \delta G_{0i}^{(gi)} &: \ 2k\hat{\Gamma} = 8\pi G(\rho + P)\theta^{(gi)} \\ \delta G_{ij}^{(gi)} &: \hat{\Phi} - \hat{\Psi} = 8\pi Ga^{2}(\rho + P)\Sigma^{(gi)} \\ \mathbf{(+ \ }\delta G_{ii}^{(gi)} \ \text{equation)} \end{split}$$

 $\delta G_{\mu\nu} = 8\pi G \delta T^M_{\mu\nu} + \delta U_{\mu\nu}$

Linear in $\hat{\Phi}, \hat{\Gamma}, \hat{\chi}, \dot{\hat{\chi}}$

Skordis 2010 Baker, Ferreira, Skordis 2012 Bloomfield, Flanagan, Park, Watson 2012 Gleyzes, Gubitosi, Piazza, Vernizzi 2013 Pearson, Battye 2011

ArXiv:1209.2117

Key: Matter + Metric + New degree of freedom

$$-a^2 \delta G_0^{0\,(gi)} = \begin{array}{cc} \kappa a^2 G \rho_M \delta_M^{(gi)} & +\alpha_0 k^2 \hat{\chi} + \alpha_1 k \dot{\hat{\chi}} \\ +A_0 k^2 \hat{\Phi} & +F_0 k^2 \hat{\Gamma} \end{array}$$

ArXiv:1209.2117

Key: Matter + Metric + New degree of freedom

$$\begin{split} -a^{2}\delta G_{0}^{0\,(gi)} &= \begin{array}{c} \kappa a^{2}G\,\rho_{M}\delta_{M}^{(gi)} & +\alpha_{0}k^{2}\hat{\chi} + \alpha_{1}k\dot{\hat{\chi}} \\ +A_{0}k^{2}\hat{\Phi} & +F_{0}k^{2}\hat{\Gamma} \\ & & & & & \\ -a^{2}\delta G_{i}^{0\,(gi)} &= \end{array} & \nabla_{i} \Big[\kappa a^{2}G\,\rho_{M}(1+\omega_{M})\theta_{M}^{(gi)} & +\beta_{0}k\hat{\chi} + \beta_{1}\dot{\hat{\chi}}\Big] \\ & +B_{0}k\hat{\Phi} & +I_{0}k\hat{\Gamma} \end{split}$$

$$a^{2}\delta G_{i}^{i\,(gi)} = 3\kappa a^{2}G\rho_{M}\Pi_{M}^{(gi)} + \gamma_{0}k^{2}\hat{\chi} + \gamma_{1}k\dot{\hat{\chi}} + \gamma_{2}\dot{\hat{\chi}} + C_{0}k^{2}\hat{\Phi} + C_{1}k\dot{\Phi} + J_{0}k^{2}\hat{\Gamma} + J_{1}k\dot{\hat{\Gamma}}$$

$$a^{2}\delta G_{j}^{i} = D_{j}^{i} \begin{bmatrix} \kappa a^{2}G \rho_{M}(1+\omega_{M})\Sigma_{M} & +\epsilon_{0}\hat{\chi} + \frac{\epsilon_{1}}{k}\dot{\hat{\chi}} + \frac{\epsilon_{2}}{k^{2}}\ddot{\hat{\chi}} \end{bmatrix} \\ + D_{0}\hat{\Phi} + \frac{D_{1}}{k}\dot{\hat{\Phi}} & +K_{0}\hat{\Gamma} + \frac{K_{1}}{k}\dot{\hat{\Gamma}} \end{bmatrix}$$

ArXiv:1209.2117

Integrability

Most general action with 1 d.o.f. (use unitary gauge) $S = \int d^4x \sqrt{-g} L(N, K^{\mu}_{\ \mu}, K_{\mu\nu}K^{\mu\nu}, {}^{(3)}R, {}^{(3)}R_{\mu\nu}{}^{(3)}R^{\mu\nu}, \dots; t) .$

Expand to 2nd order

$$L(N, K, \mathcal{S}, \mathcal{R}, \mathcal{Z}) = \bar{L} - \dot{\mathcal{F}} - 3H\mathcal{F} + (\dot{\mathcal{F}} + L_N)\,\delta N + L_{\mathcal{R}}\,\delta \mathcal{R} + \frac{\mathcal{A}}{2}\,\delta K^2 + L_{\mathcal{S}}\,\delta K^{\mu}_{\ \nu}\delta K^{\nu}_{\ \mu} + \left(\frac{1}{2}L_{NN} - \dot{\mathcal{F}}\right)\delta N^2 + \frac{1}{2}L_{\mathcal{R}\mathcal{R}}\,\delta \mathcal{R}^2 + \mathcal{B}\,\delta K\delta N + \mathcal{C}\,\delta K\delta \mathcal{R} + L_{N\mathcal{R}}\,\delta N\delta \mathcal{R} + L_{\mathcal{Z}}\delta \mathcal{Z} + \mathcal{O}(3)$$

where: $\mathcal{F} \equiv 2HL_S + L_K$, $\mathcal{A} \equiv 4H^2L_{SS} + 4HL_{SK} + L_{KK}$, $\mathcal{B} \equiv 2HL_{SN} + L_{KN}$, $\mathcal{C} \equiv 2HL_{SR} + L_{KR}$. The L_X, L_{XY} are functions of time only.

Baker, Gleyzes, Ferreira, Vernizzi in prep

Scalar-Tensor	Galileons	K.G.B.	DGP	Einstein-Aether
f(R) gravity	The Fab Four	Quintessence	EBI	Horava-Lifschitz
f(G) theories	K-essence	Dark fluids	TeVeS	G-inflation

ArXiv:1209.2117

What about the non-linear regime?

Pros: Much better sampling of density field $N_{modes} \propto k^3$

What about the non-linear regime?

Baryon, feedback and bias

And now to what we observe: Light vs Matter

• For a perturbed line element of the form:

$$ds^{2} = a^{2}(\tau) \left[-(1+2\Phi)d\tau^{2} + (1-2\Psi)\gamma_{ij}dx^{i}dx^{j} \right]$$

the equations of motion are:

$$\begin{split} &\frac{1}{a}\frac{d(a\mathbf{v})}{d\tau} = -\nabla\Phi \quad \text{(non-relativistic particles)} \\ &\frac{d\mathbf{v}}{d\tau} = -\nabla_{\perp}(\Phi+\Psi) \quad \text{(relativistic particles)} \end{split}$$

What we observe.

Large Scales: the problem with cosmic variance

ISW- late time effects on large scales

 $\propto \int (\dot{\Phi} + \dot{\Psi}) d\eta$

Large scales: the problem with the Galaxy

Not so large scale: "quasi-static" regime

A preferred length scale- the horizon

$$\mathbf{\Psi}$$
$$\mathcal{H}^{-1} \equiv \left(\frac{\dot{a}}{a}\right)^{-1} \propto \tau \simeq 3000 h^{-1} \mathrm{Mpc}$$

Focus on scales such that $k\tau \gg 1$ Most surveys $\leq 300h^{-1}$ Mpc

> Caldwell, Cooray, Melchiorri, Amendola, Kunz, Sapone, Bertschinger, Zukin, Amin, Blandford, Wagoner, Linder, Pogosian, Silvestri, Koyama, Zhao, Zhang, Liguori, Bean, Dodelson

 $-k^2 \Phi = 4\pi G \mu a^2 \rho \Delta$ $\gamma \Psi = \Phi$ Note: not applicable to CMB! Not so large scale: "quasi-static" regime The "quasi-static" functions reduce to a simple form $\gamma = \frac{p_1(a) + p_2(a)k^2}{1 + (a)k^2},$

$$\begin{split} \gamma &= \frac{p_1(a) + p_2(a)k^-}{1 + p_3(a)k^2} \ , \\ \mu &= \frac{1 + p_3(a)k^2}{p_4(a) + p_5(a)k^2} \ . \\ \text{Baker et al 2012} \\ \text{Silvestri et al 2013} \end{split}$$

where
$$p_i = p_i[L_K, L_{KK}, \cdots]$$

Goal: to use k and z dependent measurements of (γ,μ) to constrain PPF functions

Growth of Structure

Growth of structure: Redshift Space Distortions

Linear regime

--->

Turnaround

Collapsing

 $\left(\right)$

Finger-of-god

Redshift space:

Squashing effect

Collapsed

Guzzo et al 2008

Weak Lensing

Galaxy Weak Lensing

Simpson et al 2012 (CFHTLens)

State of Play in 2014

no constraints on GR

however...

Friday, 24 January 14

The Future is now

Data Type	Now	Soon	Future	
Photo-z:LSS (weak lensing)	DES, RCS, KIDS	HSC	LSST, Euclid, SKA	
Spectro-z (BAO, RSD,)	BOSS	MS-DESI,PFS,HETDEX, Weave	Euclid, SKA	
SN Ia	HST, Pan-STARRS, SCP, SDSS, SNLS	DES, J-PAS	JWST,LSST	
CMB/ISW	WMAP	Planck		
sub-mm, small scale lensing, SZ	ACT, SPT	ACTPol,SPTPol, Planck, Spider,Vista	CCAT, SKA	
X-Ray clusters	ROSAT, XMM, Chandra	XMM, XCS, eRosita		
HI Tomography	GBT	Meerkat, Baobab, Chime, Kat 7	SKA	

The Future: Redshift Space Distortions

Model Dependent Constraints

Theory	parameter	now	future
Brans-Dicke	$1/\omega$	0.006	4.19×10^{-4}
Einstein-Aether	c_1	few	0.222
	c_3	few	1.736
	lpha	few	0.244
DGP	$1/(r_c H_0)$	0.075	0.004

Summary

- The large scale structure of the Universe can be used to test gravity (different eras probe different scales).
- There is an immense landscape of gravitational theories (how credible or natural is open for debate).
- We need a unified framework to test gravity ("PPF" modelled on PPN).
- Focus on linear scales at late times (for now).
- Non-linear scales can be incredibly powerful but much more complicated
- Need new methods and observations to access the really large scales (is HI tomography the future?).
- Current measurements are not constraining.
- There are a plethora of new experiments to look forward to.