Bringing Dark Matter into Focus




Direct Detection

Dark matter scatters off of nuclei in detectors

Measure recoil energy of nuclei

DM




Direct Detection

Several different strategies for detecting recoil energy
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From: Véronique Sanglard (La Thuille 2005)




Scattering Cross Section

Example: spin-independent interaction due to Higgs exchange

nucleus
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Spin-Independent Limit

—40
10
—
g
O . w
— 10
5
= 2
Q g
Q 3
Im 8
n B
s —447 g
@) g
&
E
—46 E
10 2
xN — h — xN Z
40215185041 I I I | I L L L L L L L | L L L O
1 2
10 10

WIMP Mass [GeV/cz]

LUX Collaboration [1310.8214]




Spin-Independent Limit
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Learn about coupling to Higgs

X - q
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Gaitskell, Mandic, Filippini http://dmtools.brown.edu/
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WIMP-nucleon cross section (cm2)
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Experimental Status

Probing the Higgs-Exchange Region Low-Mass Anomalies
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Direct Detection Signals
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Scattering Rate

For typical spin-independent and -dependent interactions,
the differential scattering rate is given by

Lab-frame velocity distribution

Local DM density T

dR :ndm<v d0> T > f(v,t)

T 4>
dER dER xp (% v

Minimum speed to induce
a recoil with energy Enr




A Spectrum of Possibilities

Smooth Halo Streams

Fully Virialized < —> Not Virialized




Smooth Halo

PHYSICAL REVIEW D VOLUME 33, NUMBER 12 15 JUNE 1986

Detecting cold dark-matter candidates

Andrzej K. Drukier
Max-Planck-Institut fur Physik und Astrophysik, 8046 Garching, West Germany
and Department of Astronomy, Harvard-Smithsonian Center for Astrophysics,
60 Garden Street, Cambridge, Massachusetts 02138

Katherine Freese and David N. Spergel
Department of Astronomy, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street,
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Proposed a model for the velocity distribution of dark matter

Flat rotation curves imply that density falls off as 1/r?

- + _ + - = Maxwell-Boltzmann




Recoil Spectrum

Average over all possible DM velocities 1n the galactic halo

/’Uesc N e_ER/EO
dER , dER

my ER Maxwell-Boltzmann
2 ,u2

For standard assumptions,
recoil spectrum is exponential

Unmodulated Rate

Signal dominates at low recoil energy

Recoil Energy




A Spectrum of Possibilities

Smooth Halo Streams

f(@) ~ e/

Unmodulated Rate
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Streams

Trailing tidal debris of infalling subhalos results in ‘streams’ of dark matter

Streams are dynamically cold, have 1D morphology
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A Spectrum of Possibilities

Smooth Halo Streams
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Direct Detection Signals

Annual Modulation

Gravitational Focusing




Annual Modulation

Dark matter signal modulates annually due to Earth’s orbit about the Sun
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Drukier, Freese, and Spergel [PRD]
Review: Freese, ML, Savage [1209.3339]




Annual Modulation

More high-velocity particles in the summer
But, scattering cross section is enhanced for low-velocity particles

dR . > f(v,t)
dF,, P v

VUmin

d>v

High-energy scattering events have a maximum ~June 1
Low-energy events have a maximum ~Dec 1
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Unmodulated Rate

Modulation Amplitude

1
Amplltude = §(Rsummer - vainter)

Recoil Energy

Modulation Amplitude

Recoil Energy




A Spectrum of Possibilities

Smooth Halo Streams
F(@) ~ e/ (@) = 0(F — Tsproam)
Enr
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Modulation Spectrum

Shape of the modulation also depends on particle properties
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Modulation Spectrum

Shape of the modulation also depends on particle properties
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Modulation Spectrum

Shape of the modulation also depends on particle properties
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Higher Harmonics

Lee, ML, and Safdi [1307.5323]

Expand differential scattering rate in terms of Fourier components

dR -
TN Ao + nz_:l |A,, cosnw(t — tg) + By, sinnw(t — tg)]
Higher Fourier modes are enhanced for
high vmin scenarios local DM substructure in the halo

(i.e., light DM) (i.e., streams)




E(A1)/E(An) =

E(A1) / E(Ay)

Higher Harmonics
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m, = 50 GeV, Smooth Halo, Xe

Lee, ML, and Safdi [1307.5323]

Exposure needed to observe A1 to 95%
confidence, relative to that for A,
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Higher Harmonics

Lee, ML, and Safdi [1307.5323]

Exposure needed to observe A1 to 95%
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Higher Harmonics

Lee, ML, and Safdi [1307.5323]

_ Exposure needed to observe A1 to 95%
E(A1)/E(An) = confidence, relative to that for Ay
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Modulation Anomalies

DAMA, 9.3c CoGeNT, 2.2

Nal(T1) target, 14 years of data

Ge target, 3.4 years of data
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DAMA [astro-ph/0307403, 1002.1028, 1308.5109]; CoGeNT [1106.0650, 1401.3295]; CDMS [1203.1309]




Nal(TI) target, 14 years of data

Modulation Anomalies

DAMA, 9.30 CoGeNT, 2.2c

Ge target, 3.4 years of data
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Gravitational Focusing

Lee, ML, Peter, and Safdi [1308.1953]

Sun’s potential deflects incoming, unbound dark matter particles

Focusing 1s strongest during the Spring

DM Wind

June |

K. Griest, PRD 1988.
Alenazi and Gondolo [astro-ph/0608390]




Modulation Phase

Lee, ML, Peter, and Safdi [1308.1953]

Earth’s orbit causes ~3% modulation that 1s extremized ~June 1

Focusing causes ~1.5% modulation that is peaked ~March 1

A competition between two different modulation effects




Modulation Phase
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Modulation Phase
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Modulation Phase
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Modulation Phase
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Experimental Implications

Gravitational focusing results in a dependence of phase on recoil energy bin

Powerful way to distinguish signal from background

Example: 50 GeV DM, Ge target

Ey ~40 —41 keV  =—— F,, ~10—-11 keV  =—— FE,, ~2—3 keV
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Example: Ge Target

For current thresholds, phase shift particularly significant for masses
greater than ~15 GeV

Current advances in low-threshold technology could make shift
relevant for ~8 GeV dark matter
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DAMA Revisited

DAMA signal can correspond to ~11 or 76 GeV dark matter

Both masses are in tension with null results from other experiments
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DAMA Revisited

11 GeV scenario should still peak ~June 1 in each bin

Future Nal experiments (i.e., SABRE) might push the threshold lower to where a phase
shift would be measurable
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DAMA Revisited

76 GeV scenario

is affected by gravitational focusing

The phase shift can be as much as a ~month in the low-energy bins
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Dark Matter Disk

May form from the merger of subhalos that are dragged into the baryonic
disk and disrupted

Corotates with the Galactic disk, but with a lag speed ~50 km/s

http://www.sciencedaily.com/releases/2008/09/080915210506.htm




Measuring the Dark Disk

Lee, ML, Safdi and Sharma [in progress]

Particles in the dark disk have low velocities in the lab frame

Therefore, significantly affected by gravitational focusing

Gravitational focusing
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Relic Neutrinos

The “holy grail” of neutrino physics

Cosmological v
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_[Supernova burst (19874) |

/l Reactor anti-v |
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peV. - meV eV keV MeV  GeV TeVv PeV EeV
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http://www.aspera-eu.org/images/stories/files/Roadmap.pdf




rel. rate [a.u.]

Neutrino Capture

Neutrino capture on -decaying nuclei provides a clear path forward

Ve + °H — He + e~

No threshold on incoming neutrino energy

Beta et al., arXiv: 1307/4738.
Weinberg, Phys. Rev 128, 1457 (1962).




The Case for Neutrinos

The neutrino capture rate on a single nucleus 1s given by

A, X p/aNCB vy, fo(v,t) d>v

oNCBVy 18 velocity-independent to high accuracy at low neutrino energy

-------------------------

--------------------------

Integrates to unity!

However, the density still modulates due to gravitational focusing!




Relic Neutrino Modulation

Safdi, ML, Spitz, and Formaggio [1404.0680]

Gravitational focusing is the only source of modulation for relic neutrinos

Modulation fractions ~0.1-1% depending on v mass and velocity distribution

Requires a 10 kg-sized tritium target, which 1s feasible with PTOLEMY




Summary

Particle and astrophysics assumptions about dark matter can enhance
higher-frequency modes of modulation spectrum

Unbound dark matter particles focused by Sun’s gravitational
potential, affecting the modulation phase

Phase shift most relevant for low-speed particles

1.e., masses greater than ~15 GeV, or lighter mass particles at low-threshold experiments




