Higgs inflation as a mirage

J.L.F. Barbón

Work in collaboration with

A. Casas, IFT (Madrid) J.R. Espinosa, IFAE (Barcelona) J. Elias-Miró, IFAE (Barcelona)

based upon arXiv:1501.02231 after a digression...

Scalars have a bad reputation in particle physics

Scalars have a bad reputation in particle physics

Unless they are:

bureaucrats of the supersymmetric party
or

aristocrats of the Goldstone family

The true pedigree of our iggs boson is still unknown

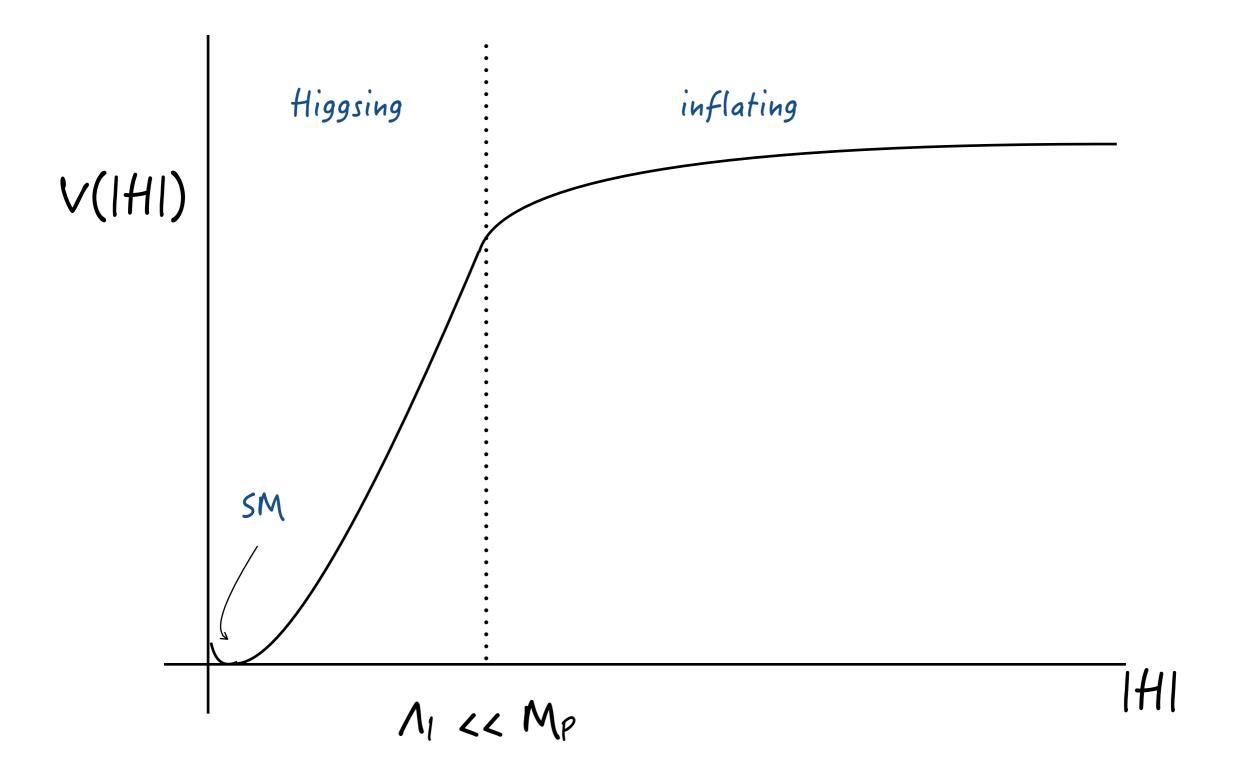
Maybe it is just a fine-tuned Maverick from the UV

The true pedigree of our iggs boson is still unknown Maybe it is just a fine-tuned Maverick from the UV

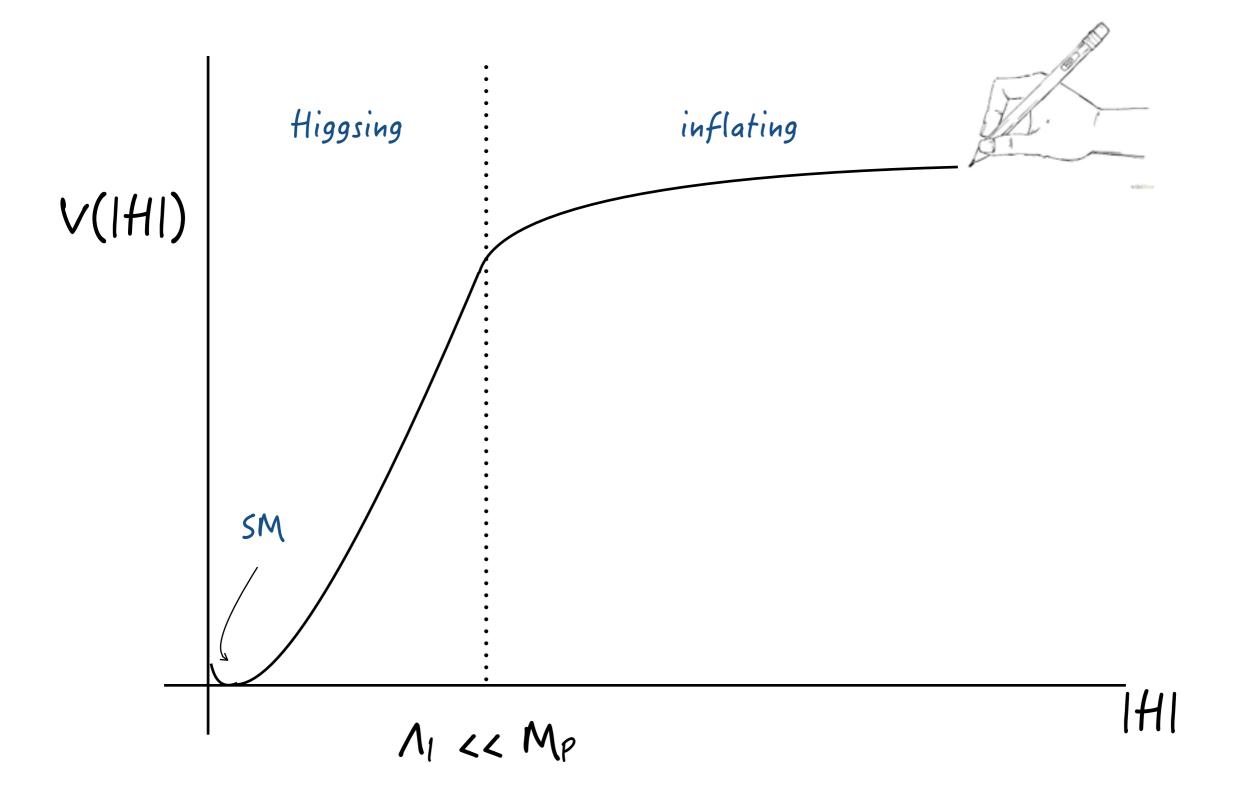
In that case the Occam jihad would rather send into forced labour

Not only has to Higgs the SM, it has to inflate the Universe!

Higgs inflation mantra: H IS ONE AND ONLY D.O.F.



Higgs inflation mantra: H IS ONE AND ONLY D.O.F.



Remarkably, it can be done with ONE extra parameter

$$\mathcal{L}_{SM} + \frac{M_P^2}{2}R + 3|H|^2R$$

Bezrukov & Shaposhnikov (2007)

a Higgs mass term proportional to Ricci curvature but also

a Higgs-dependent Newton constant

Restoring standard GN with a conformal rescaling

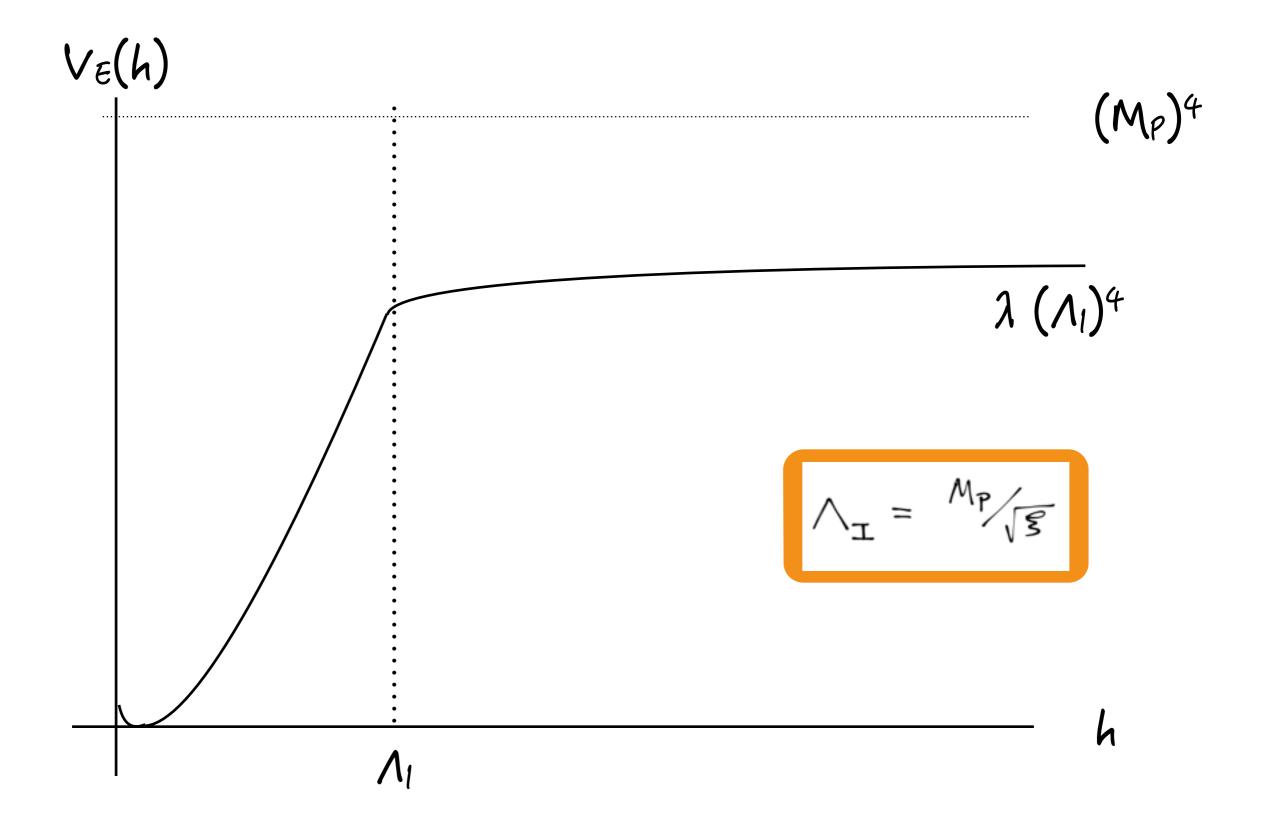
$$(length)^{2} \longrightarrow \frac{(length)^{2}}{(1+2\xi |H|^{2}/M_{P}^{2})}$$

The SM model potential gets rescaled as well at large fields

$$V_{SM}(h) \approx \frac{\lambda}{4} (h^2 - v^2)^2$$

$$V_{E}(h) = \frac{V_{SM}(h)}{(1 + 3 h^2/M_P^2)^2}$$

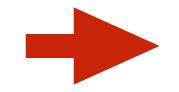
$$|H|^2 = \frac{h^2}{2}$$



A fit to SP/P ~ 10-5 fixes

ξ~10⁴

The plateau slow-rolls like Starobinsky's



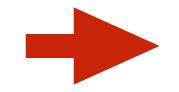
It leads to a "perfect" value for Ms ~ 0.964

and a small tensor/scalar ratio ~ 0.0033

A fit to SP/P ~ 10-5 fixes

ξ~10⁴

The plateau slow-rolls like Starobinsky's



It leads to a "perfect" value for Ms ~ 0.964

and a small tensor/scalar ratio ~ ~ 0.0033

A DREAM MODEL?

you may feel uneasy about $\xi \sim 10^4$ as the coupling of a non-renormalizable operator. It means there are lower scales lurking

BUT ···

you may feel uneasy about $\xi \sim 10^4$ as the coupling of a non-renormalizable operator. It means there are lower scales lurking

Quantum corrections to λ help in bringing ξ down, but still $\xi_{fit} >> 1$

you may feel uneasy about $\xi \sim 10^4$ as the coupling of a non-renormalizable operator. It means there are lower scales lurking

Quantum corrections to λ help in bringing ξ down, but still

ξfit >> 1

There are further problems of detail, such as the tension of ns with the measured value of Mtop / MHiggs

cf. A. Salvio (2013) for a recent update

Computing quantum corrections is an "art" in itself

cf. Burgess, Patil & Trott (2014) for a recent discussion with references

How could it work in the first place?

How could it work in the first place?

The potential flattens because of an asymptotic cancelation Suppose we run the argument with a more general model

$$\cdots + \xi f(h) R - V_{SM}(h)$$

How could it work in the first place?

The potential flattens because of an asymptotic cancelation Suppose we run the argument with a more general model

$$V_{E}(h) \longrightarrow \frac{V_{SM}(h)}{(1+3f(h))^{2}}$$

The asymptotic plateau requires a FUNCTIONAL TUNING

$$V_{SM}(h) \sim f(h)^2$$
 asymptotically

WHY?

We need to incorporate it as an ASSUMPTION about the deep UV of the theory: namely there is a weakly-broken

SHIFT SYMMETRY

in the asymptotic large-h region of field space.

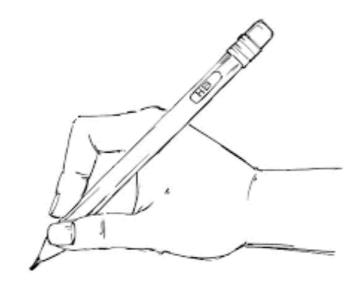
WHY?

We need to incorporate it as an ASSUMPTION about the deep UV of the theory: namely there is a weakly-broken

SHIFT SYMMETRY

in the asymptotic large-h region of field space.

This is looking more like a mere case of



There are further structural peculiarities of the model, associated to the fact that $\xi >> 1$

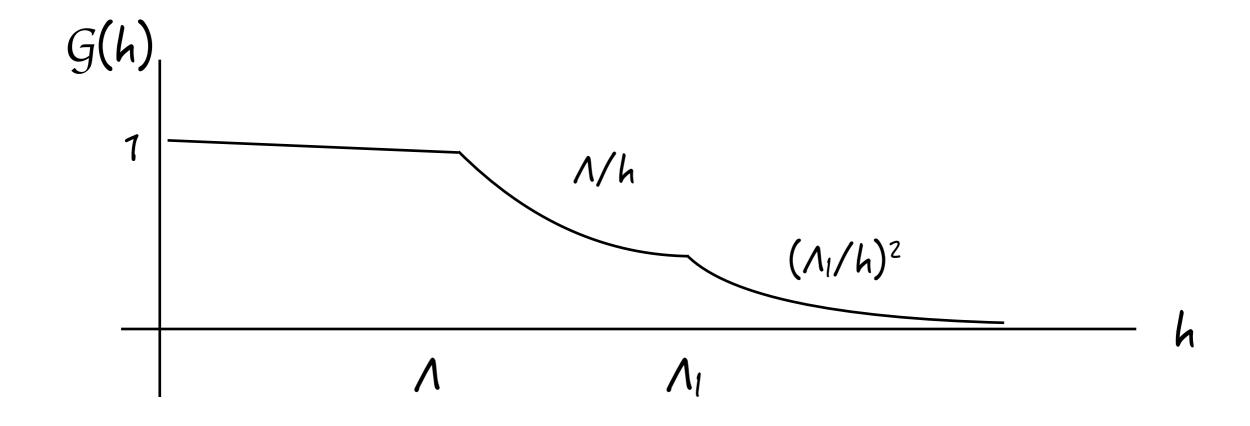
The main one is the existence of a lower dynamical scale Λ namely for $\xi >> 1$ we have the hierarchy

Burgess, Lee & Trott (2009) JFB & Espinosa (2009)

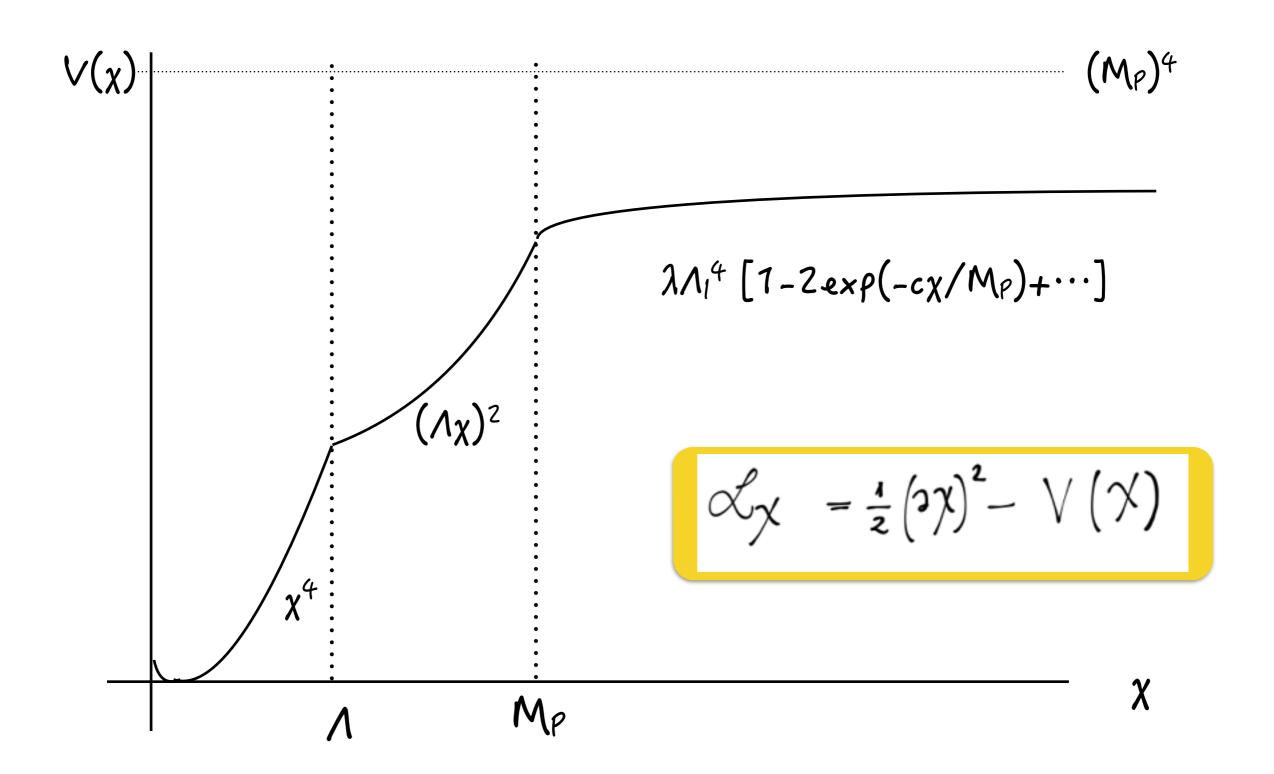
The map to Einstein frame gives us not only V_{E} (h) but also a modified field metric

$$\mathcal{L}_{h} = \frac{1}{2} \mathcal{G}(h) (h)^{2} - \mathcal{V}_{\epsilon}(h)$$

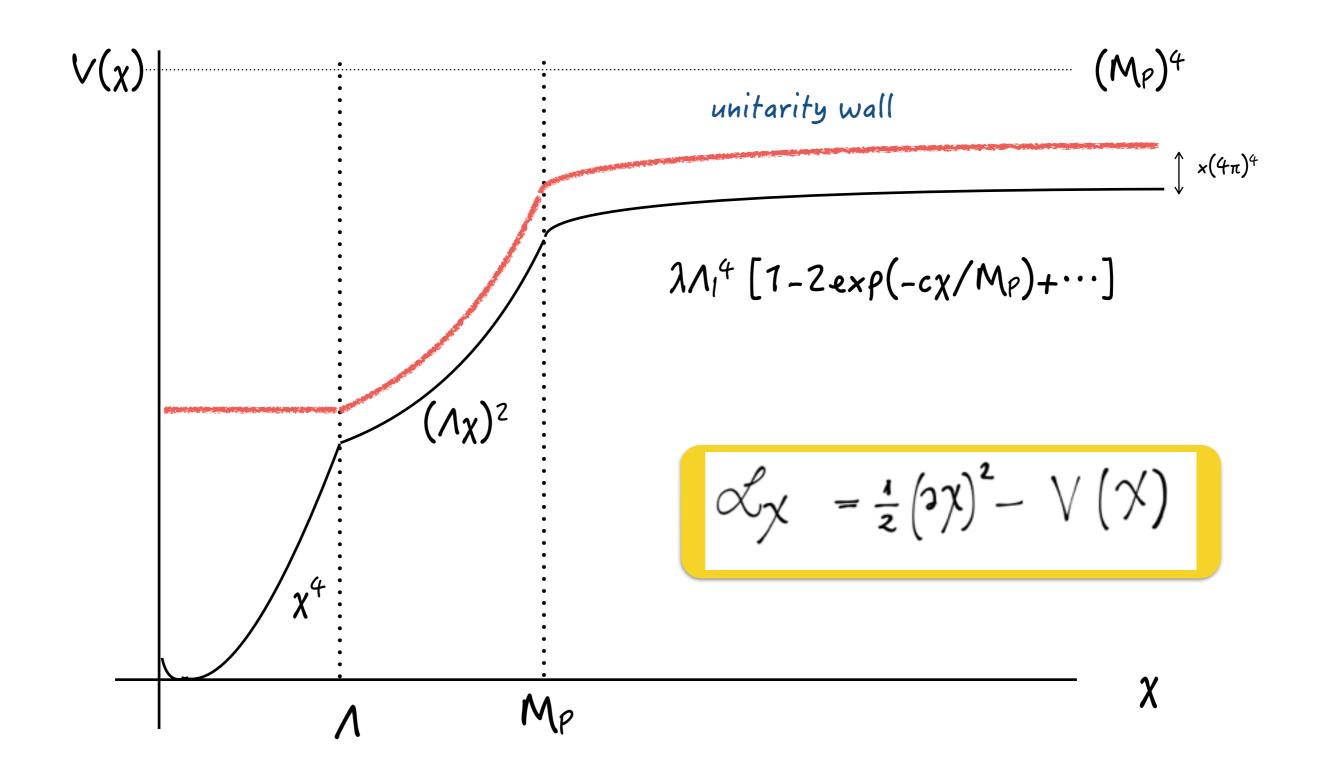
It turns out that the function G(h) is nontrivial for $h>\Lambda$



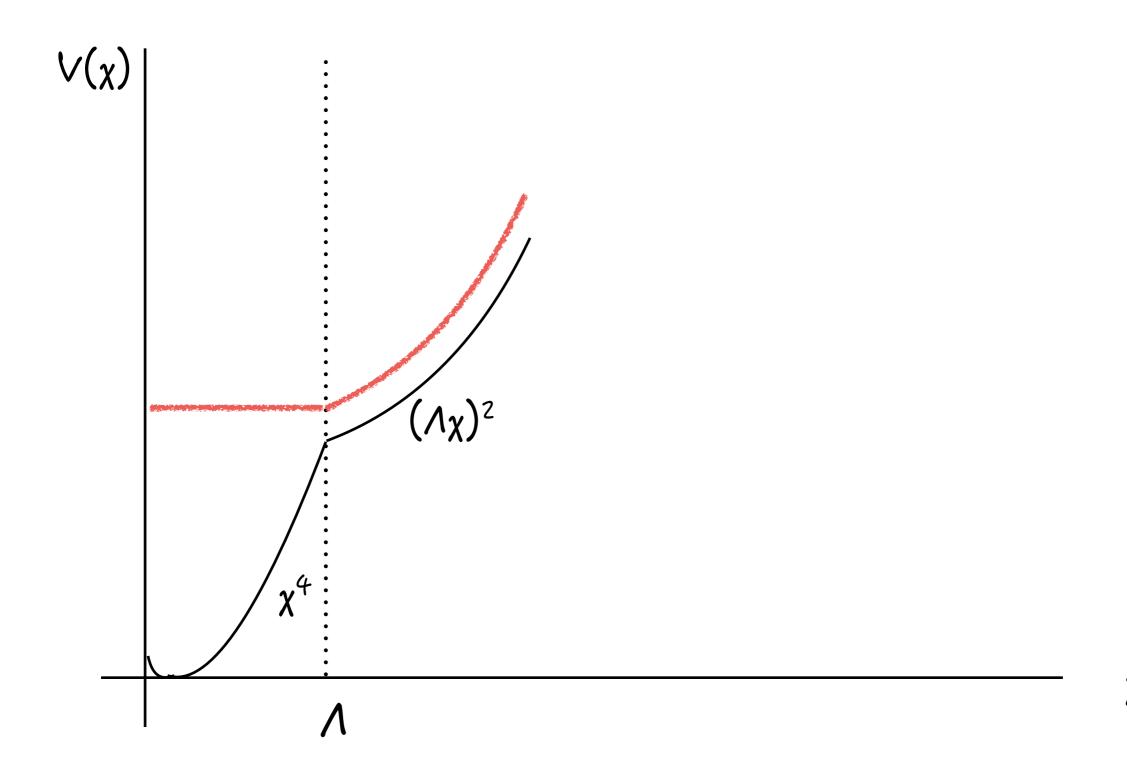
The "true face" of Higgs inflation



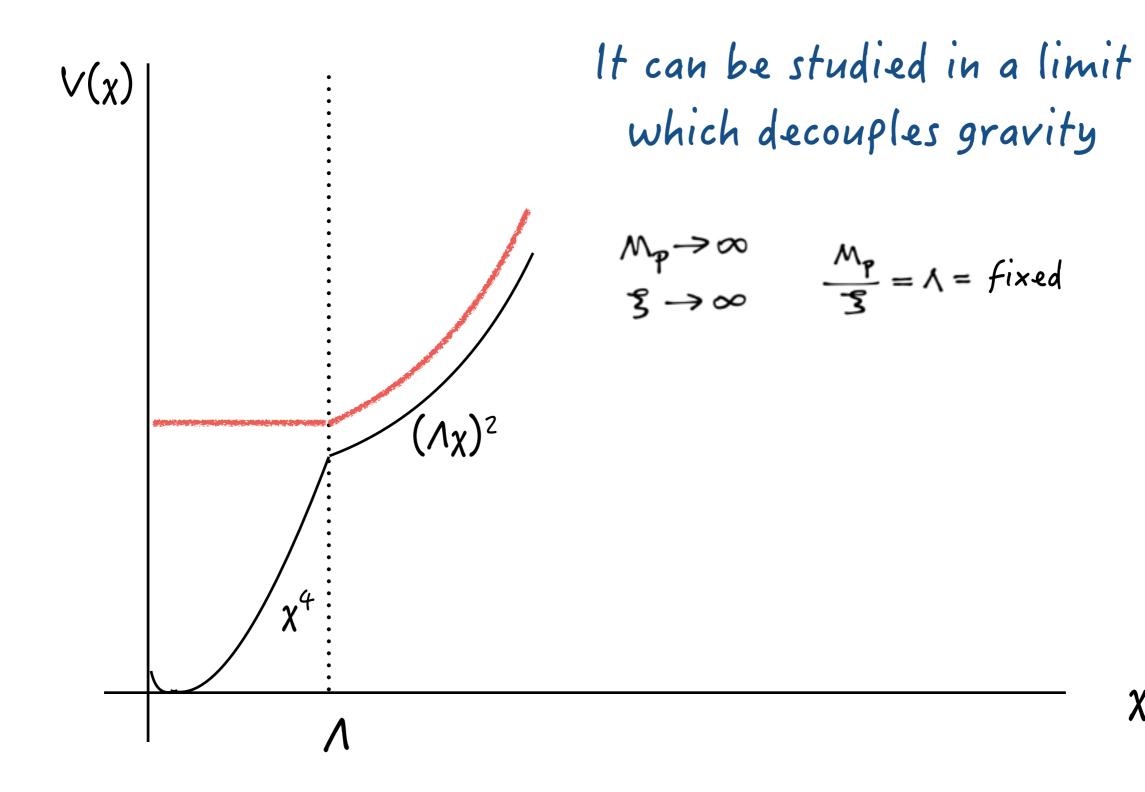
The "true face" of Higgs inflation



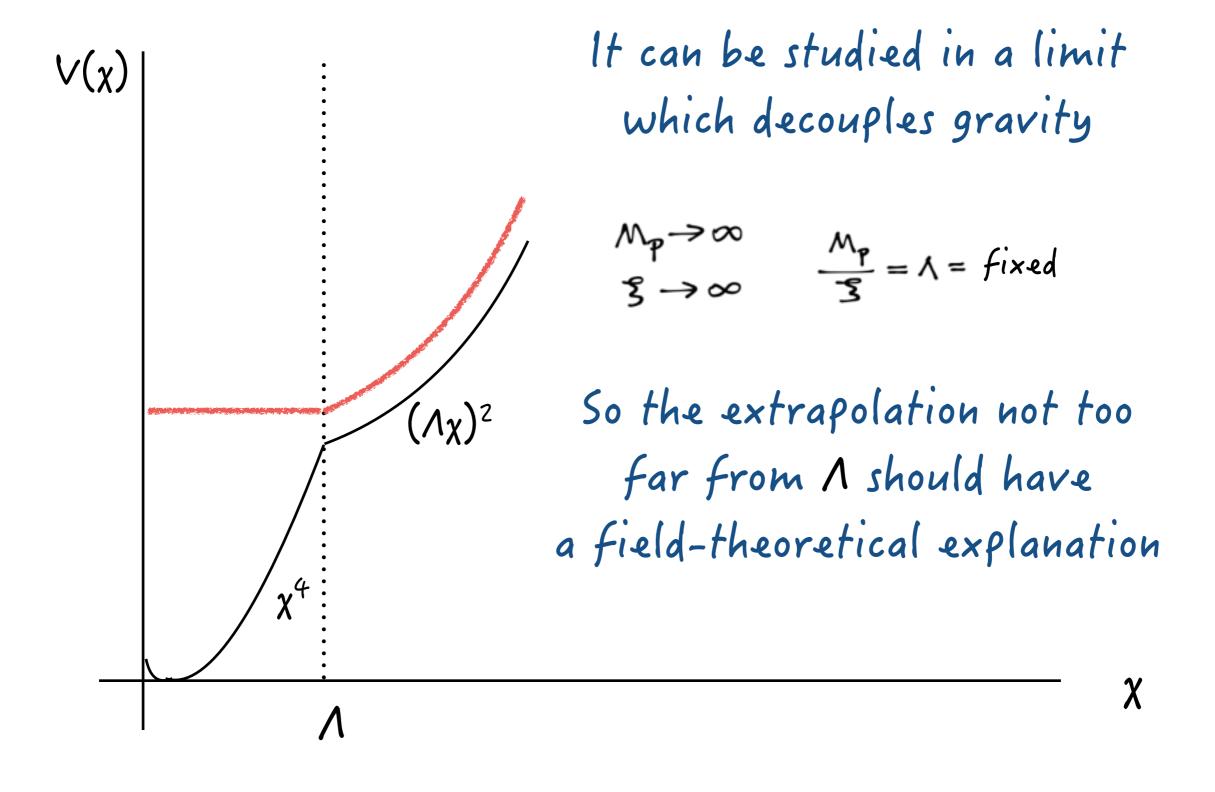
focus on the "kink" at the scale 1



focus on the "kink" at the scale 1



focus on the "kink" at the scale 1



Simplest interpretation: a threshold effect from a massive d.o.f. around Λ

Goal:

Invent a toy model which does four things:

- 1. The low-energy theory reproduces a HI scenario under extrapolation
- 2. It unitarizes the Goldstones at intermediate energies
- 3. It does not contain large & types
- 4. It is as simple as possible

1&2 was achieved some time ago by
Giudice & Lee (2011)

Introduce a new SM singlet & with mass m & 1 and couplings

so that integrating it out at tree level immediately induces terms of type

1H14

SM-like threshold effect ξ |H|2 R

"Higgs-inflation" operator

 R^2

"Starobinsky-inflation" operator

$$S = g \frac{m Mp}{m^2}$$

Picking parameters

$$g = O(1)$$

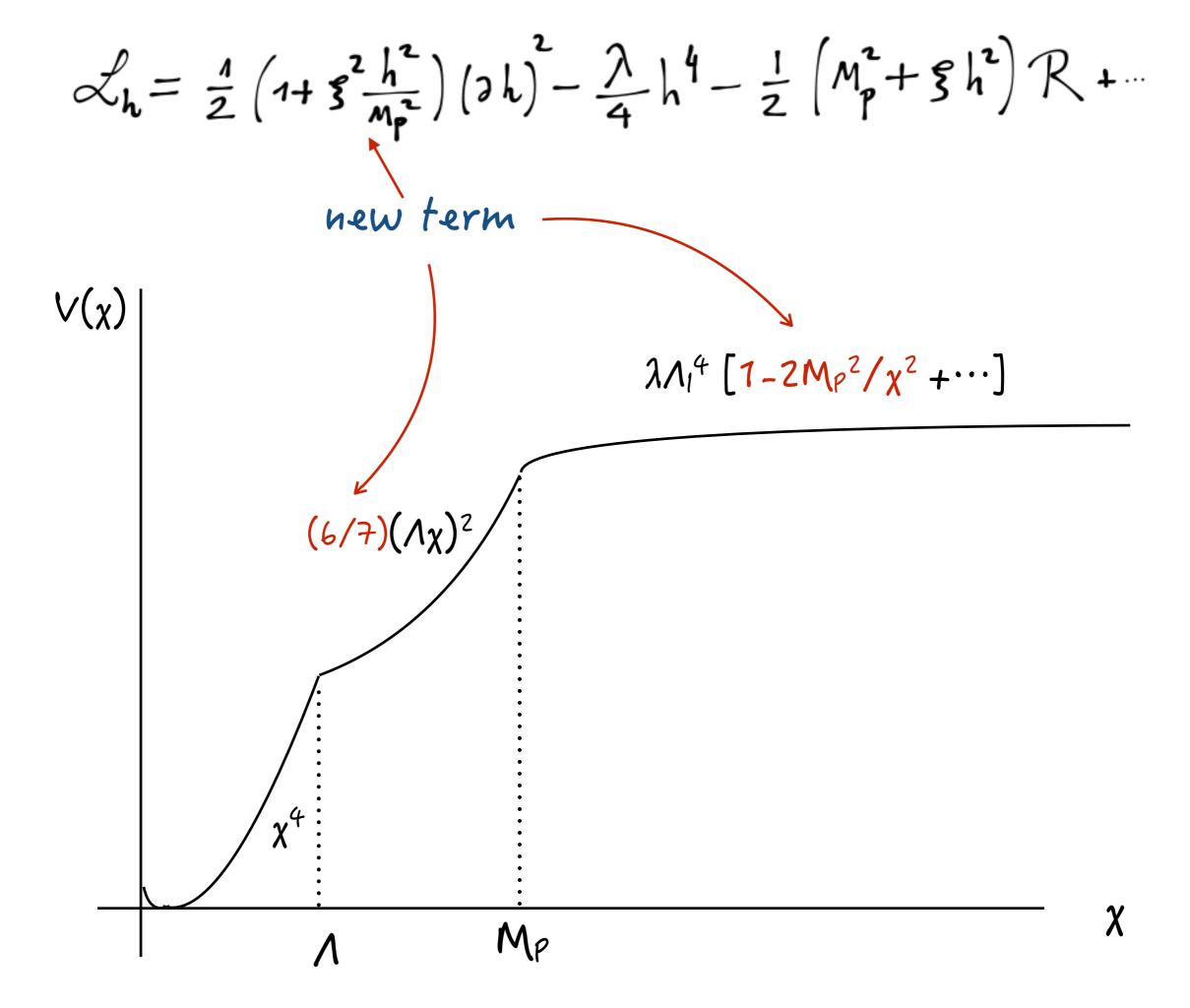
$$\lambda = \lambda_{low} = \lambda_{high} - \mu^2/2m^2 << \lambda_{high} = \lambda'$$

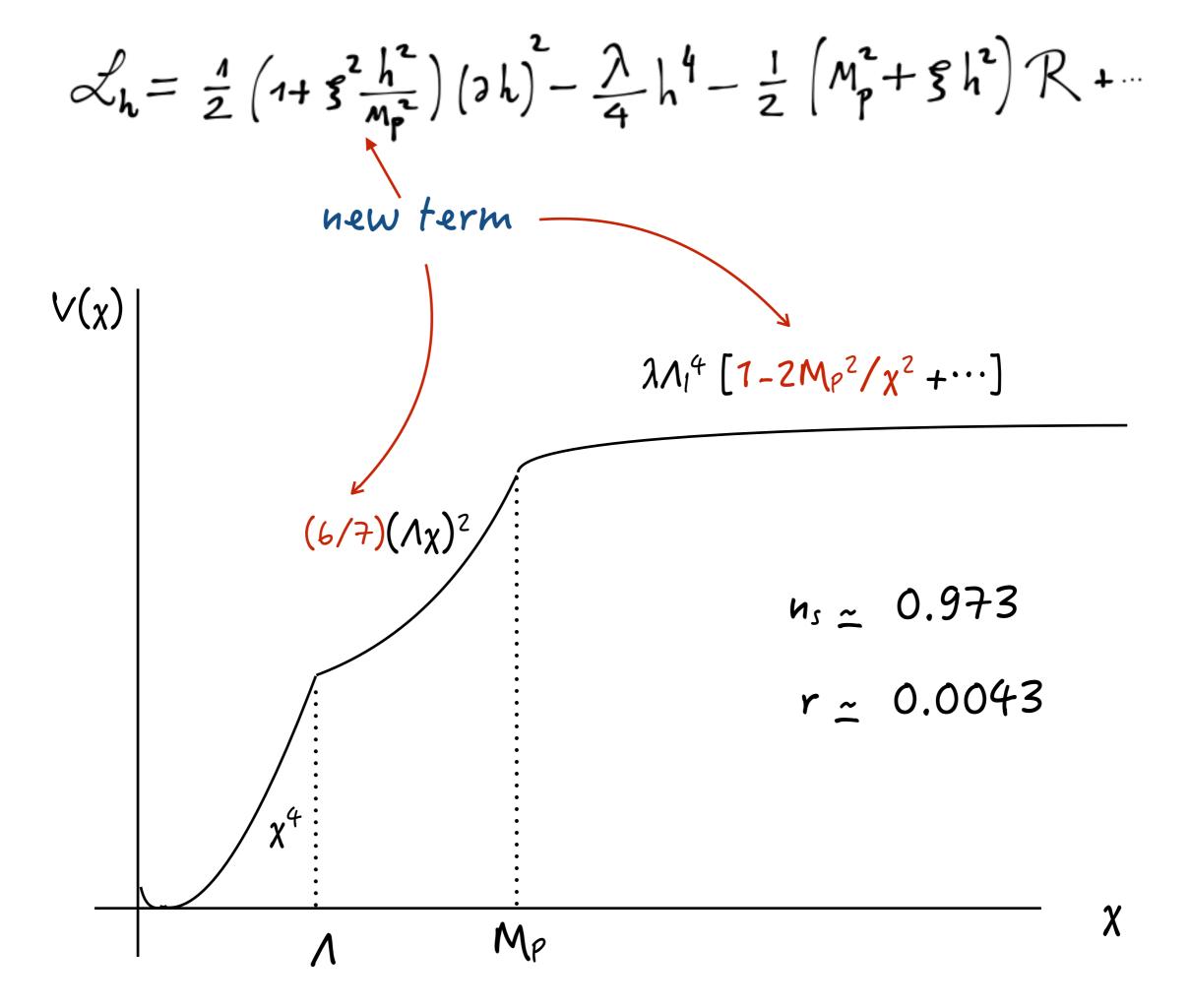
makes the low-energy model

$$\mathcal{L}_{h} = \frac{1}{2} \left(1 + 3^{2} \frac{h^{2}}{M_{P}^{2}} \right) (3h)^{2} - \frac{\lambda}{4} h^{4} - \frac{1}{2} \left(M_{P}^{2} + 5h^{2} \right) \mathcal{R} + \cdots$$

satisfying 1 to 4 above

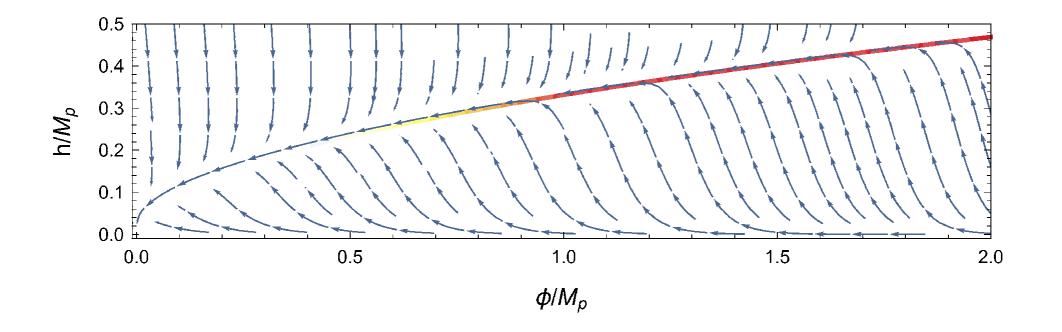
$$\mathcal{L}_{h} = \frac{1}{2} \left(1 + 3^{2} \frac{h^{2}}{M_{p}^{2}} \right) \left(2h \right)^{2} - \frac{\lambda}{4} h^{4} - \frac{1}{2} \left(M_{p}^{2} + 5h^{2} \right) \mathcal{R} + \cdots$$
New term





The plateau in the E-frame two-field model

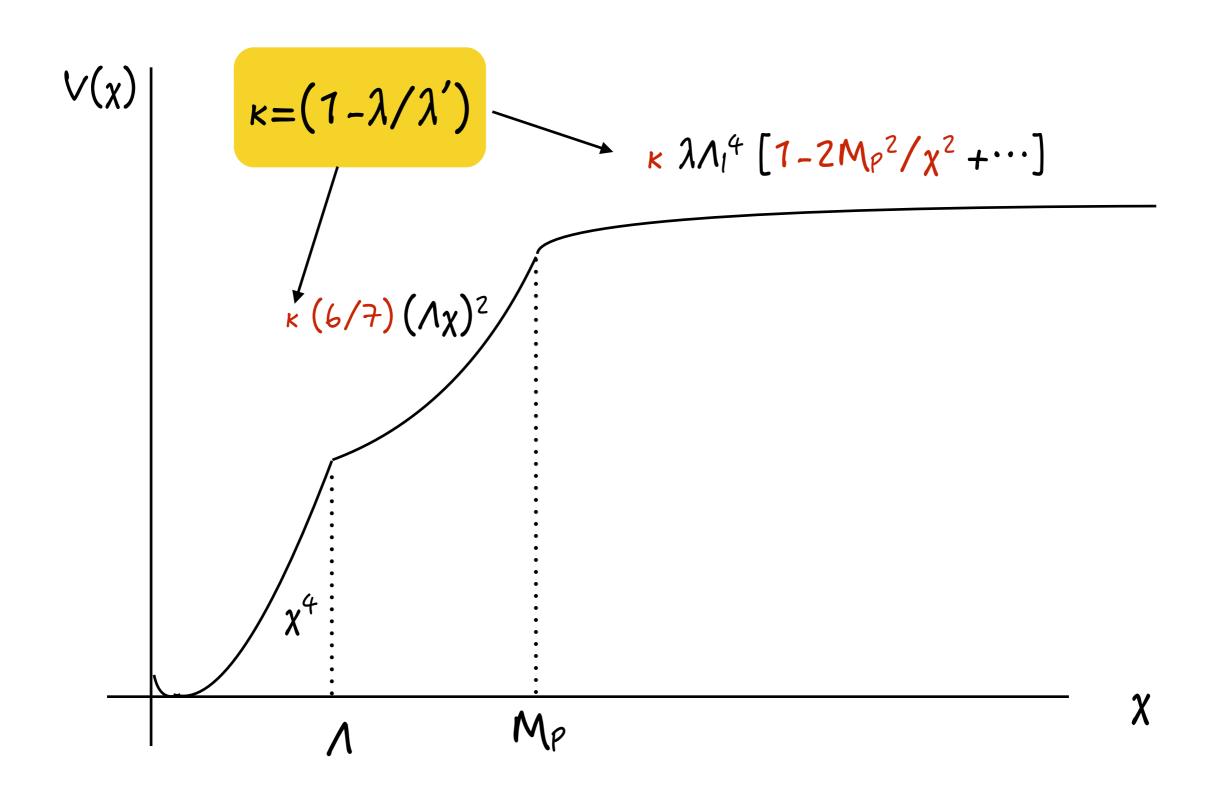
$$\mathcal{L}_{h,h} = \frac{1}{2} \sum_{i,j=h,d}^{J} G_{ij} \supset \overline{\Phi}_i \supset \overline{\Phi}_j - \bigvee (h, \phi)$$



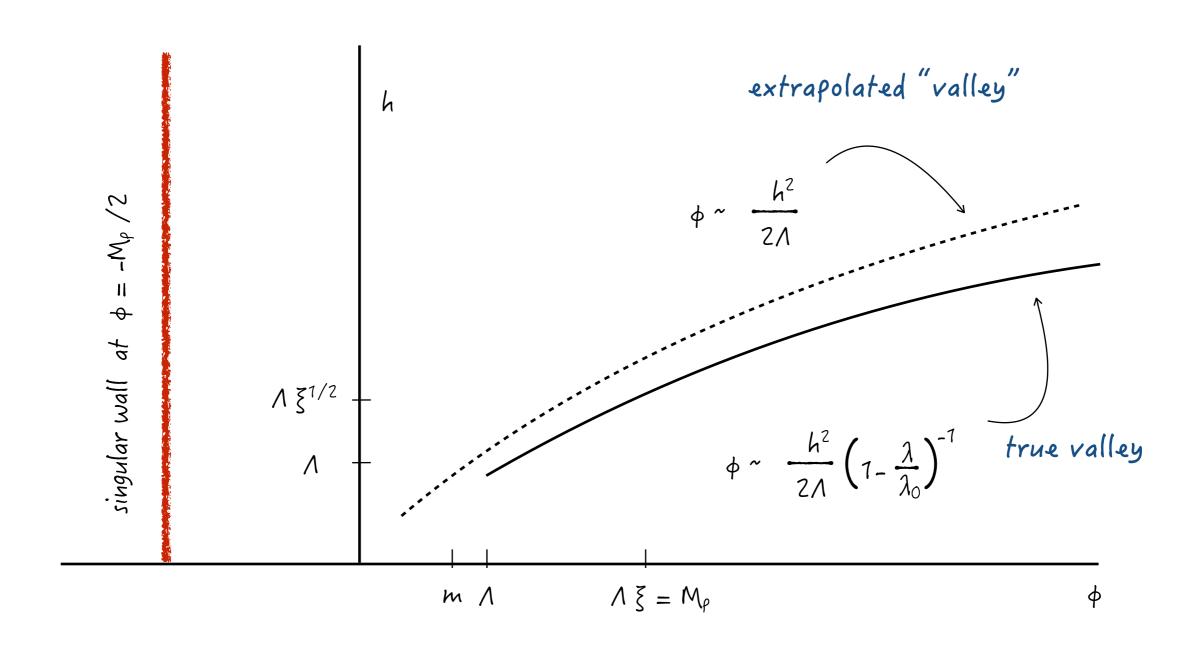
comes in at a lower height than the extrapolated model by a factor of $\kappa = (1 - \lambda/\lambda')$

but has the SAME slow-roll parameters

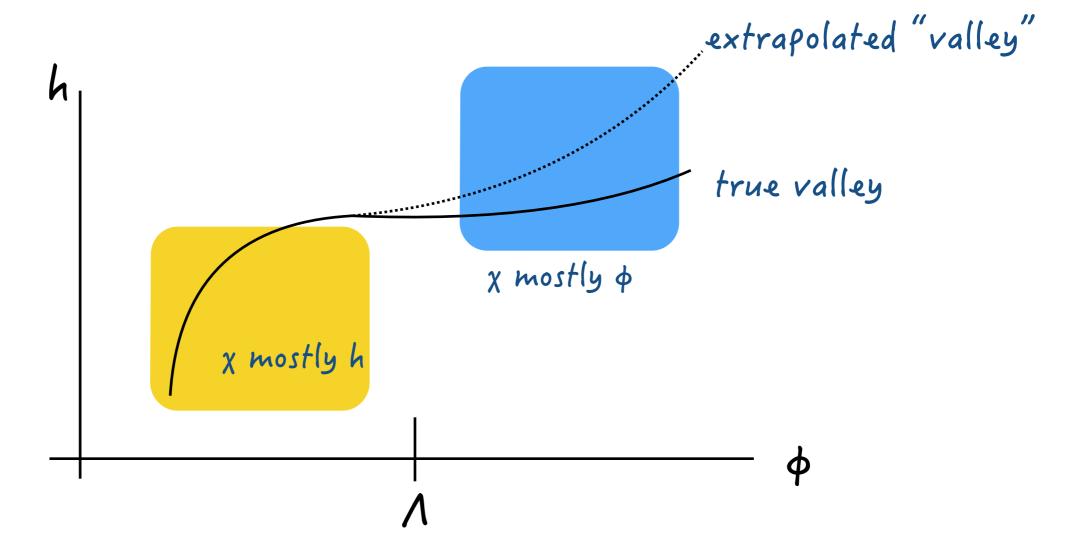
In the intermediate region h is heavier than ϕ So the natural single-field projection beyond Λ involves $\chi \sim \phi$



Map of the two-field configuration space



The extrapolation is a "mirage"

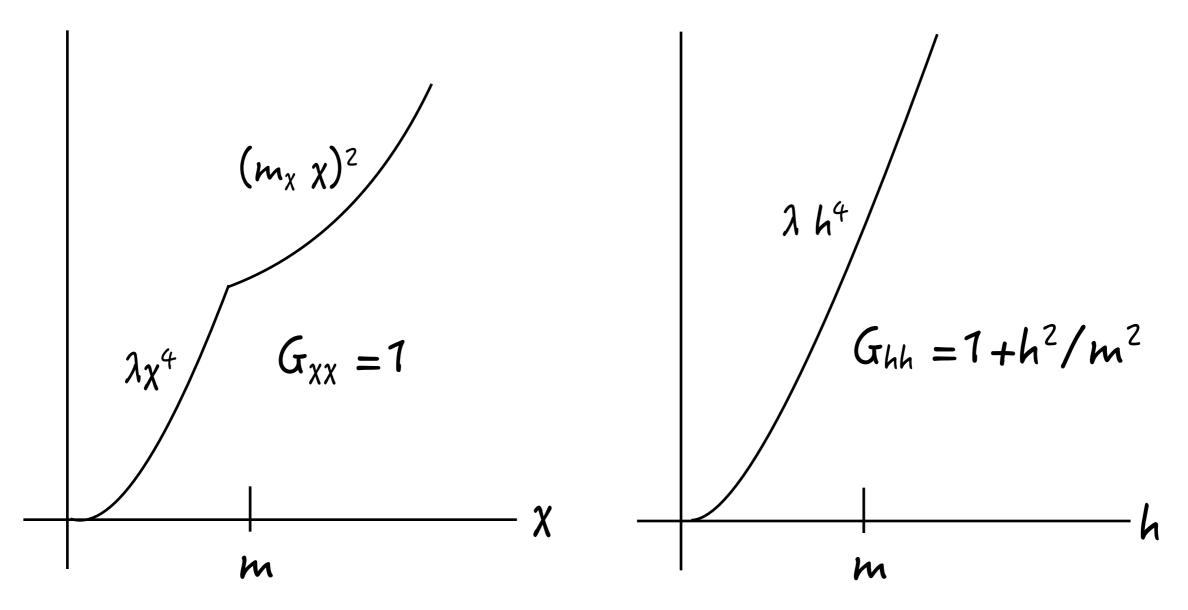


1-submanifold single-field model up to two derivatives

Different sumanifolds correspond to different effective operators when projected onto the h axis

Going beyond two derivatives we could "sniff-out" the right valley

Go back to the "kink" model



The h-model, extrapolated beyond m, is given by the x-model

$$m_{\chi}^2 = 2 \lambda m^2$$

But we can start from the two-field model

$$\mathcal{A}_{h,\phi} = \frac{1}{2} (2h)^2 + \frac{1}{2} (2b)^2 - \frac{1}{2} m^2 \phi^2 + \frac{1}{2} m \phi h^2 - \frac{\lambda'}{4} h^4$$

which reproduces the previous model below the scale m, integrating out ϕ in the two-derivative approximation

At large fields, this model has a quadratic valley along the submanifold

$$\phi(h) \approx \lambda' h^2/m$$

with effective mass

$$\widetilde{m}^2 = m_{\chi}^2 \left(1 - \frac{\lambda}{\lambda'}\right)$$

If we now pick all higher derivatives

and keep the leading correction

$$\frac{1}{8m^4}$$
 $h^2 \square^2 h^2$

we can evaluate the effect of this operator on a classical solution of the extrapolated Lagrangian

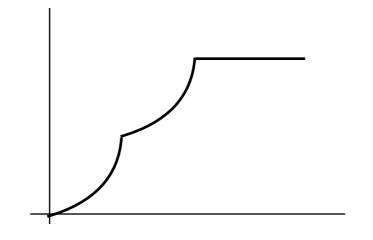
$$\Box \chi^{c} = - m_{\chi}^{2} \chi^{c}$$

Resulting in the right shift of the effective mass

$$m_{\chi}^{2} \longrightarrow m_{\chi}^{2} \left(1 - \frac{\lambda}{\lambda'} + \cdots\right) = \tilde{m}^{2} + O(\lambda^{2})$$

CONCLUSION

The fact that the HI potential has intricate structure



suggests that it should be interpreted as the result of forcing a single-field projection on a Landscape-like potential