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Neutrino Oscillations



Neutrino masses and neutrino flavors
Neutrino flavor eigenstates are linear combinations of mass eigenstates by means of three 
mixing angles and one CP-phase

δm2

−∆m2

ν1

ν2

ν3

νe νµ ντ

“solar” mass difference

“atmospheric” mass 
difference

Neutrino mass eigenstates differ by two mass differences. The sign of the biggest one is 
still unknown [normal hierarchy:           , inverted hierarchy:          ]. 
For example, in inverted hierarchy:

+∆m2 −∆m2

Capitolo 1

Introduzione

Il Modello Standard Elettrodebole postula che i tre neutrini, νe, νµ e ντ (e
i rispettivi antineutrini) siano particelle prive di massa. In realtà, recenti
evidenze sperimentali implicano che i neutrini abbiano massa, al pari degli
altri fermioni fondamentali. L’introduzione di una matrice di mescolamento
leptonica per i neutrini massivi, analoga a quella di Cabibbo-Kobayashi-
Maskawa (CKM) usata per i quark, si è resa necessaria per spiegare le oscil-
lazioni di neutrini, per la prima volta ipotizzate da Pontecorvo [1] e da Maki,
Nakagawa e Sakata [2].

I tre autostati di sapore νe, νµ, ντ sono legati ai tre autostati di massa
ν1, ν2, ν3 attraverso una matrice unitaria U :




νe

νµ

ντ



 = U




ν1

ν2

ν3



 . (1.1)

Per gli antineutrini vale un’equazione analoga alla precedente, con la sosti-
tuzione U → U∗.

La matrice U è usualmente parametrizzata nel modo seguente:

U =




1 0 0
0 c23 s23

0 −s23 c23








c13 0 s13e−iδ

0 1 0
−s13eiδ 0 c13








c12 s12 0
−s12 c12 0

0 0 1



 , (1.2)

ove sij = sin θij e cij = cos θij, con θij ∈ [0, π/2]. La fase δ ∈ [0, 2π] è
associata ad un’eventuale violazione di CP. Indicando ciascuna delle matrici
prodotto in (1.2) con Rij e definendo Γδ = diag(1, 1, eiδ), si ottiene

U = R23ΓδR13Γ
+
δ R12. (1.3)

1

U(θ12, θ13, θ23, δ)
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Typical supernova neutrino energies are below threshold for    and   production via CC.            
     and      behave in a similar way and are often denoted by    . ντ

µ τ
νµ νx
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IV. SUMMARY OF OSCILLATION CONSTRAINTS AND IMPLICATIONS FOR ABSOLUTE MASSES

In this section we summarize the previous results in terms of one-parameter constraints, all the others being
marginalized away. We also show updated oscillation constraints on the main absolute mass observables [37, 38],
namely, the effective electron neutrino mass mβ (probed in β decay), the effective Majorana mass (probed in 0ν2β
decay searches), and the sum of neutrino masses Σ, which can be probed by precision cosmology.
Figure 3 shows the Nσ bounds on the 3ν oscillation parameters. Blue (solid) and red (dashed) curves refer to

NH and IH, respectively. The curves are expected to be linear and symmetric around the best fit only for gaussian
uncertainties. This is nearly the case for the squared mass differences δm2 and ∆m2, and for the mixing parameters
sin2 θ12 and sin2 θ13. The bounds on sin2 θ23 are rather skewed towards the first octant, which is preferred to the
second at ∼ 2σ. Also the probability distribution of δ is highly nongaussian, with some preference for δ close to π,
but no constraint above ∼ 2σ. As expected, there are no visible differences between the NH and IH curves for the
parameters δm2 and sin2 θ12, and only minor variations for the the parameters ∆m2 and sin2 θ13. More pronounced
(but <∼ 1σ) differences between NH and IH curves can be seen for sin2 θ23 and, to some extent, for δ.
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FIG. 3: Results of the global analysis in terms of Nσ bounds on the six parameters governing 3ν oscillations. Blue (solid) and
red (dashed) curves refer to NH and IH, respectively.

Neutrino Masses and Mixing Angles

* G.L. Fogli et al., arXiv: 1205.5254.



Core-Collapse Supernovae 
as Neutrino Sources



Stellar collapse and Supernova Explosion

Onion structure Implosion 
(Collapse)

Core-collapse supernovae: terminal phase of massive stars [                ]. At the end of their 
life, these stars collapse ejecting the outer mantle by means of shock-wave driven explosions.

M ≥ 8M⊙

Proto-Neutron 
Star Explosion

Time scale: neutrino emission lasts ~ 10 s. Expected rate: 1-3 SN/century in our galaxy (~ 10 kpc).

Energy scale: 99% of the released energy (~ 10    erg) is emitted by neutrinos and antineutrinos 
of all flavors (energies ~ 15 MeV).

53

neutrino 
cooling 

by diffusion



SN 1987A
The last known core-collapse supernova near our galaxy is the SN 1987A. 
Its neutrino burst observation was the first verification of stellar evolution mechanism.

SN 1987A (Feb. 23, 1987)Sanduleak -69° 202



SN 1987A
Unfortunately, only few detectors were able to detect SN 1987A neutrinos. The first neutrinos 
were contemporaneous within time uncertainties.

Time distribution of SN 1987A events
water Cherenkov detector (11 events)
water Cherenkov detector (8 events)

scintillator telescope (5 events)



Are we ready for the next explosion?
Today, several detectors are (or will be soon) waiting for the next explosion.

IceCube (10 )6

LVD (400)
Borexino (100)

Baksan (100)
Super-Kamiokande (10 )4

KamLAND (400)
SNO+ (800)

LENA (15000) 

MiniBooNE (200)
LBNE (1000)
HALO (50)

The expected number of events is estimated for a galactic supernova (10 kpc).

Hyper-Kamiokande (10 )5



* Super-Kamiokande Collaboration, arXiv: 0706.2283

Are we ready for the next explosion?

Super-Kamiokande Mini-BooNE

Upper limit: 0.32 SN/year 
for d < 100 kpc (90% CL).*

Upper limit: 0.69 SN/year 
for d < 13.5 kpc (90% CL).**

Neutrino bursts from galactic explosions will be detected helping us to improve our knowledge 
about SN physics.

** MiniBooNE Collaboration, arXiv: 0910.3182



Characteristics of Neutrino Signal



Characteristics of Neutrino Signal

* L. Huedepohl et al. (Garching group),  arXiv: 0912.0260

Exploding 1D electron-capture supernova simulation (                      ).M = 8.8 M⊙

Georg  Raffelt,  MPI  Physics,  Munich   ISAPP  2011,  4/8/11,  Varenna,  Italy  

Long-­‐Term  Cooling  of  EC  SN  (Garching  2009)  

L.  Hüdepohl  et  al.  (Garching  Group),  arXiv:0912.0260  

Neutrino  opacities  without  these  effects  
(~  Basel  case?)  
Much  longer  cooling  times  
  

Cooling phaseDe-leptonization burst
(large     luminosity peak)νe

Accretion phase
(large fluxes and 

large            flux differences)ν̄e − ν̄x

(small fluxes and small     
            flux differences)ν̄e − ν̄x



Accretion Phase
Set of 1D simulations for different SN masses (Garching models)

★ During the de-leptonization burst the 
neutrino signal is independent on the SN 
mass and the equation of state. SNe might 
be adopted as standard candles.

★ During the accretion phase the differences 
among the fluxes of different flavors are 
large.
 
★ Consequences of neutrino oscillations 
are relevant. 
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FIG. 1: Early postbounce evolution of luminosities (left panels), and mean energies (right panels) for a set of nine 1D
simulation with progenitors of different masses (see text for details) as obtained by the Garching group [39]. Quantities for νe,
νe, and νx are shown in the top, middle and bottom panel, respectively. The vertical line indicates the early timescale (100
ms) of particular interest in this article.

νe

ν̄e

νx

Luminosity Mean energy

*  For details see http://www.mpa-garching.mpg.de/ccsnarchive/, M. Kachelriess et al., astro-ph/0412082.
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Georg  Raffelt,  MPI  Physics,  Munich   ISAPP  2011,  4/8/11,  Varenna,  Italy  

Long-­‐Term  Cooling  Calculations  (Basel  2009)  Long-Term Cooling

* Fisher et al. (Basel group),  arXiv: 0908.1871 [astro-ph.HE]

During the cooling phase the fluxes of different flavors are similar. Therefore detailed 
oscillation physics is not crucial since it should be responsible only for small variations.

8.8 M⊙ 10.8 M⊙ 18 M⊙



Neutrino Oscillations in Supernovae



e,µ,

fermion (p, n, e)

Z

e,µ,

all flavors

µ µ

Neutral current (NC) interactions 
with matter background

µ µ

W

e e

electron

e-flavor only

µ µ

e-flavor has charged current 
(CC) interactions too

Neutrinos interact with matter and among themselves...

Neutrino interactions

interactionsν − ν

     

                (−)ν

(−)ν

(−)ν

(−)ν



Equations of motion

with the neutrino Hamiltonian defined as

i �̇E,ϑ = [HE,ϑ, �E,ϑ] i ˙̄�E,ϑ = [H̄E,ϑ, �̄E,ϑ]and

vacuum term
(with opposite sign 
for antineutrinos) 

interaction termν − ν

HE,ϑ =
UM

2
U
†

2E
+
√
2GF Nl + 2π

√
2GF

�
dE

�
d cosϑ� (�E,ϑ� − �̄E,ϑ�) (1− cosϑ cosϑ�)

matter term
N� = diag(ne−nē, nµ−nµ̄, nτ−nτ̄ )

HE,ϑ =
UM

2
U
†

2E
+
√
2GF Nl + 2π

√
2GF

�
dE

�
d cosϑ� (�E,ϑ� − �̄E,ϑ�) (1− cosϑ cosϑ�)HE,ϑ =

UM
2
U
†

2E
+
√
2GF Nl + 2π

√
2GF

�
dE

�
d cosϑ� (�E,ϑ� − �̄E,ϑ�) (1− cosϑ cosϑ�)HE,ϑ =

UM
2
U
†

2E
+
√
2GF Nl + 2π

√
2GF

�
dE

�
d cosϑ� (�E,ϑ� − �̄E,ϑ�) (1− cosϑ cosϑ�)

The equations of motion for neutrinos and antineutrinos describing the time evolution in a 
homogeneous medium for each energy mode E and angle    areϑ

The Hamiltonian for antineutrinos has the vacuum term with opposite sign.



When the vacuum term is in resonance with the matter term maximal flavor conversions 
occur (MSW effect).

Neutrino Interactions with Matter (MSW)

* For details see: A. Dighe and A. Yu. Smirnov, arXiv: hep-ph/9907423

Georg Raffelt, Max-Planck-Institut für Physik, München Neutrinos in Cosmology, Astro, Particle & Nuclear Physics, 16 24 September 2009, Erice, Sicily

LevelLevel--Crossing Diagram in a SN EnvelopeCrossing Diagram in a SN Envelope

Dighe & Smirnov, Identifying the neutrino mass spectrum from a sDighe & Smirnov, Identifying the neutrino mass spectrum from a supernovaupernova

neutrino burst, astroneutrino burst, astro--ph/9907423ph/9907423

Normal mass hierarchyNormal mass hierarchy Inverted mass hierarchyInverted mass hierarchy
Inverted hierarchy

        resonance for neutrinos
        resonance for neutrinos
∆m2

δm2

        resonance for antineutrinos
        resonance for neutrinos
∆m2

δm2

Eigenvalue diagram of  3 x 3 Hamiltonian matrix for 3-flavor oscillations

Georg Raffelt, Max-Planck-Institut für Physik, München Neutrinos in Cosmology, Astro, Particle & Nuclear Physics, 16 24 September 2009, Erice, Sicily

LevelLevel--Crossing Diagram in a SN EnvelopeCrossing Diagram in a SN Envelope

Dighe & Smirnov, Identifying the neutrino mass spectrum from a sDighe & Smirnov, Identifying the neutrino mass spectrum from a supernovaupernova

neutrino burst, astroneutrino burst, astro--ph/9907423ph/9907423

Normal mass hierarchyNormal mass hierarchy Inverted mass hierarchyInverted mass hierarchy

Normal hierarchy

vacuum

  represents   
ne < 0

ν̄



Neutrino-neutrino Interactions

Neutrino-sphere

Rν

q

p

θpq

ϕq

p

θ0

t

r

Hνν =
√

2GF

�
d
3�q

(2π)3
(P�q −P�q)(1− cos θpq)

Hνν = µ

�
dq(P�q −P�q) = µ(J− J) = µD

Bulb model
Duan et al., PRD74,105014(2006) 

Multi-angle effect: the interaction depends on 
the relative angle of the colliding neutrinos

When this angle is averaged out the single-angle approximation is obtained

* For details see: H. Duan et al., arXiv: astro-ph/0606616

Only lately, we are learning to appreciate the role of the angle among colliding neutrinos.

The           term is non linear and it depends on the relative angle between colliding neutrinos

We assume the “bulb model”*: the neutrino-sphere emits neutrinos of all flavors from each point 
in the forward solid angle uniformly and isotropically.

ν − ν

HE,ϑ =
UM

2
U
†

2E
+
√
2GF Nl + 2π

√
2GF

�
dE

�
d cosϑ� (�E,ϑ� − �̄E,ϑ�) (1− cosϑ cosϑ�)HE,ϑ =

UM
2
U
†

2E
+
√
2GF Nl + 2π

√
2GF

�
dE

�
d cosϑ� (�E,ϑ� − �̄E,ϑ�) (1− cosϑ cosϑ�)HE,ϑ =

UM
2
U
†

2E
+
√
2GF Nl + 2π

√
2GF

�
dE

�
d cosϑ� (�E,ϑ� − �̄E,ϑ�) (1− cosϑ cosϑ�)HE,ϑ =

UM
2
U
†

2E
+
√
2GF Nl + 2π

√
2GF

�
dE

�
d cosϑ� (�E,ϑ� − �̄E,ϑ�) (1− cosϑ cosϑ�)



* For details see: G.L. Fogli, E. Lisi, A. Marrone, A. Mirizzi, I. Tamborra arXiv: 0707.1998, 0808.0807 
  G.G. Raffelt and A. Yu. Smirnov, arXiv: 0705.1830, 0709.4641, H. Duan et al., arXiv: 0706.4293 

The immediate signature of collective effects is 
the “spectral split”: for energies above a 
critical value, a full flavor swap occurs*.

Spectral splits

The appearance and the number of splits are strictly dependent on: 
★ the ratio among the fluxes of different flavors
★ the geometry of the neutrino angular emission
★ the neutrino mass hierarchy. 

fluxes after collective effects 
in inverted hierarchy 

Collective neutrino flavor transitions in supernovae and the role of trajectory averaging 5
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Figure 1. Initial fluxes (at r = 10 km, in arbitrary units) for different neutrino species
as a function of energy. The fluxes are all proportional to φi(E)/〈E〉.

Rν being the neutrino-sphere radius, while Lν is the total emission power for a given

neutrino species. In numerical calculations, we assume reference values Rν = 10 km and

Lν = 1051 erg/s for each species ν = νe, νe, νx, νx.

Figure 1 shows the initial neutrino number fluxes per unit energy in arbitrary units
(all fluxes being proportional to φi(E)/〈E〉 through the same normalization constant).

Notice the significant difference (asymmetry) between neutrinos and antineutrinos, and

between different neutrino flavors. However, the νe and νx fluxes happen to coincide

at an energy Eeq # 19 MeV, while for the νe and νx fluxes the equality occurs at

Eeq # 24 MeV. Flavor transformations of any kind are not operative for neutrinos at

E = Eeq, and for antineutrinos at E = Eeq.
The spherical symmetry of emission reduces to a cylindrical symmetry along the

radial line-of-sight (polar axis). At any radius r > Rν along the polar axis, neutrinos will

arrive with different momenta p characterized by |p| = E, incident polar angle ϑ, and

azimuthal angle ϕ. In the calculation of self-interaction effects, the effective differential

neutrino number density dnp with momentum between p and p + dp is then [17]

dnp = jν(E)dΩ = jν(E) dϕ d cosϑ , (9)

within the cone of sight of the neutrino-sphere, with ϑ ∈ [0, ϑmax], being

ϑmax = arcsin(Rν/r) . (10)

In general, angular coordinates are important, since the interaction strength

between two neutrinos of momenta p and q depends on their relative angle ϑpq through

the factor (1−cos ϑpq). Calculations embedding the full angular coordinates are dubbed

“multi-angle.” The often used “single-angle” approximation consists in averaging the

angular factor along the polar axis, which is assumed to encode the same flavor history

of any other neutrino direction. In this case, the effective neutrino number density n

Collective neutrino flavor transitions in supernovae and the role of trajectory averaging 22
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Figure 8. Multi-angle simulation in inverted hierarchy: Final fluxes (at r = 200 km,
in arbitrary units) for different neutrino species as a function of energy. Initial fluxes
are shown as dotted lines to guide the eye.

Figure 8 shows the final (r = 200 km) ν and ν fluxes as a function of energy. The

neutrino spectral swap at E > Ec ! 7 MeV is rather evident in the left panel, although

it is less sharp with respect to the single-angle case in Fig. 5. In the right panel of Fig. 8,

the minor feature associated to the “antineutrino spectral split” is largely smeared out

(see the same panel in Fig. 5), and survives as a small excess of νe at low energy.

The spectra in Figure 8 are largely independent from the specific mixing value
chosen for the simulations (sin2 θ13 = 10−4), as far as θ13 > 0 (as we have also

checked numerically). Variations of sin2 θ13 only lead to logarithmic variations in

the (unobservable) synchronized-bipolar transition radius, and in the depth of bipolar

oscillations [43, 44], which are anyway smeared out in multi-angle simulations, as we

have just seen. Therefore, the spectra in Figure 8 may be taken as rather general

“initial conditions” for possible later (ordinary or stochastic) matter effects, occurring
when ω ∼ λ(r) at r # 200 km. These later, ordinary matter effects are instead strongly

dependent on θ13, and vanish for, say, sin2 θ13 ∼< 10−5 (see, e.g., [7]). If θ13 is indeed that

small (but nonzero), neutrino self-interaction effects could be the only source of flavor

transformations in (anti)neutrino spectra.

In conclusion, for 0 < sin2 θ13 ∼< 10−5, the observable spectra at the SN exit

would be similar to those in Fig. 1 for the normal hierarchy case (no significant flavor
transformations of any kind), and to those in Fig. 8 for the inverted hierarchy case (large

self-interaction effects). For sin2 θ13 ∼> 10−5, the same spectra should be taken as “initial

conditions” for the calculation of subsequent MSW effects. Once more, we remark that

the decoupling of self-interaction and MSW effects is a characteristic of our adopted

SN model, inspired by shock-wave simulations [7]. The phenomenology becomes more

complicated in alternative models with shallow matter profiles, when both effects can
occur in the same region, as in the simulations performed in [17, 47].

non-oscillated fluxes

fluxes after collective effects 
= non-oscillated fluxes in 
normal hierarchy 



Lately, realistic angular distributions of neutrino emission have become available. 
The neutrino angular distributions are flavor dependent and non-isotropic.

* S. Sarikas, G.G. Raffelt, L. Huedepohl, H.-T. Janka, arXiv: 1109.3601

Angular emission spectra for different flavors for a SN with 15 M⊙, 280ms

Angular distributions
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FIG. 1: Flux spectra for our 280 ms SN model. The angle
variable 0 ≤ u ≤ 1 is based on R = 44.7 km.

not a good description because neutrinos emerge from a
thick layer. The ν̄e and νx intensities are similar in the
radial direction: the excess ν̄e flux largely arises from
its broader angular distribution (larger emission region).
Flavor oscillations depend on the difference of the e and
x distributions, which is small in the radial direction
(Fig. 1). The angular distributions do not cross, although
in principle there could have been a forward νx excess.

In the context of neutrino oscillations, ω = ∆m2/2E
is a preferred energy variable, where ∆m2 = (50 meV)2

is the “atmospheric” neutrino mass-squared difference
relevant for 1–3 oscillations studied here. Moreover,
treating anti-neutrinos formally as negative-energy neu-
trinos with negative occupation numbers vastly simpli-
fies the formalism. Flavor oscillations can exchange νe
with νx, leaving the overall neutrino flux unchanged, so
only Fνe −Fνx matters. Our sign convention means that
for anti-neutrinos we then use Fν̄x − Fν̄e , corresponding
to the flavor isospin convention [14]. The neutrino flux
difference distribution g(ω, u) thus defined is shown in
Fig. 2. It is negative for anti-neutrinos (ω < 0) because
Fν̄e > Fν̄x . For ω ∼ 0.2 km−1 there is a spectral crossing
as a function of u, i.e. for large E the νx flux does exceed
the νe flux in the forward direction.

Self-induced oscillations exchange the positive and neg-
ative parts of g(ω, u), leaving fixed the overall flavor con-
tent ε = (Fνe − Fνx)/(Fν̄e − Fνx) − 1 =

�
dω du g(ω, u).

Our g(ω, u) is mostly negative for anti-neutrinos and

FIG. 2: Distribution g(ω, u) describing the neutrino fluxes.

mostly positive for neutrinos, so collective oscillations
largely correspond to pair conversions νeν̄e ↔ νxν̄x.
Accretion-phase distributions are “single crossed” in this
sense, i.e. g(ω, u) changes sign essentially only on the line
ω = 0, because of the large excess of the νe and ν̄e fluxes.
Significant multiple crossings are typical for the cooling
phase [15].
Equations of motion (EoM).—We describe three-flavor

neutrino propagation by energy- and angle-dependent
3×3 matrices ΦE,u(r). Sans-serif letters denote matri-
ces in flavor space. The diagonal ΦE,u elements are
the ordinary number fluxes Fα

E,u (flavor α) integrated
over a sphere of radius r. Negative E and negative
number fluxes for anti-neutrinos. The off-diagonal el-
ements, which are initially zero, represent phase infor-
mation caused by flavor oscillations. The flavor evo-
lution is then provided by the “Schrödinger equation”
i∂rΦE,u = [HE,u,ΦE,u] with the Hamiltonian [21]

HE,u =
1

vu

�
M

2

2E
+

√
2GFN�

�
(1)

+

√
2GF

4πr2

� +∞

−∞
dE�

� 1

0
du� 1− vuvu�

vuvu�
ΦE�,u� .

The matrix M
2 of neutrino mass-squares causes vacuum

flavor oscillations and that of net charged lepton densi-
ties N� = diag(ne−nē, nµ−nµ̄, nτ−nτ̄ ) adds the Wolfen-
stein matter effect. The third term provides neutrino-
neutrino refraction and is analogous to matter except for
Pantaleone’s off-diagonal elements and except that in the
SN context neutrinos are not isotropic. A neutrino ra-
dial velocity at radius r is vu = (1 − uR2/r2)1/2. The
factor 1 − vuvu� arises from the current-current nature
of the weak interaction and causes multi-angle effects.
Moreover, vu appears in the denominator because we fol-
low the flavor evolution projected on the radial direction,

u = sin2 θRwith the angular variable and      the neutrino emission angle at the neutrino-sphere.θR



Suppression of collective oscillations during 
the accretion phase

During the accretion phase the 
matter density is always larger than 
the neutrino one.
Multi-angle matter suppression of 
collective flavor conversions at 
small radii could occur. 
Does this happen?

* For details see: Esteban-Pretel et al., arXiv: 0807.0659, S. Chakraborty et al.,  arXiv: 1104.4031, arXiv: 1105.1130,   
   Banerjee, Dighe, Raffelt, arXiv: 1107.2308, S. Sarikas et al., arXiv: 1109.3601, arXiv: 1110.5572

Yes, analytical estimations (stability 
analysis) and numerical simulations 
find multi-angle matter suppression 
of the collective oscillations during 
the accretion phase.

7

FIG. 5: 10.8 M! progenitor mass. Radial evolution of the net electron density ne (left panel) and of the neutrino density
difference nνe

− nνx
(right panel) at different post-bounce times.

FIG. 6: 10.8 M! progenitor mass. Radial evolution of the ratio R between electron and neutrino densities at different
post-bounce times. The two dashed vertical strips delimit the position of rsync (left line) and rend (right line).

Matter density during the accretion phase vs. 
neutrino density for a             SN (Basel model)10.8M⊙



Suppression of collective oscillations during 
the accretion phase

Matter 
suppression 
of collective 

effects during 
the accretion
-only MSW-

(Basel models)

The high electron density suppresses collective flavor oscillation (no splits). Only MSW occurs.
Note that the angular distribution is crucial for the flavor-oscillation suppression! 
* For details see: S. Chakraborty et al.,  arXiv: 1104.4031, arXiv: 1105.1130, S. Sarikas et al., arXiv: 1110.5572, arXiv:
1109.3601

partial conversions

matter suppression

8

the neutrino densities, we realize that at the different
post-bounce times considered, ne is always larger than
or comparable to nνe

− nνx
. It suggests that one cannot

ignore matter effects on self-induced flavor transforma-
tions during the accretion phase.
In order to quantify the relative strength of the electron

and neutrino densities, in Fig. 6 we show the ratio

R =
ne

nνe
− nνx

. (13)

as a function of the radial coordinate r at different
post-bounce times for tpb ∈ [0.1, 0.6] s. The range
rsync < r < rend is delimited with two vertical dashed
lines. The values of rsync and rend determine the possi-
ble range for the self-induced flavor conversions and the
shock radius rsh denotes the abrupt drop in the electron
density. Therefore, their relative position is crucial to as-
sess the impact of matter effects. In the expected oscilla-
tion range, R # 1 will imply a strong matter dominance
in the flavor conversions and thus complete suppression
of the self-induced effects. Instead, when electron and
neutrino densities are comparable (R∼> 1), decoherence
will occur for the collective oscillations.
The ratio R, being very large behind the shock front,

prevents flavor conversions in this region. However, the
ratio can go down to R∼> 1 for r > rsh, leading to matter-
induced decoherence and thus partial flavor changes.
Let us discuss in more detail what occurs at differ-

ent post-bounce time snapshots in Fig. 6. At very early
times (tpb = 0.1 s) the matter term is strongly domi-
nant also behind the shock-front (R # 1). Under these
conditions oscillations are always blocked. Then, at in-
termediate times (tpb = 0.225, 0.3 s) the matter den-
sity in the post-shock region, where flavor conversions
are possible, is dropping faster than the neutrino one.
Therefore, the ratio R drops at 1-2 in this range and
matter-induced decoherence is possible in this case. Sub-
sequently, at tpb = 0.325 s, oscillations are suppressed
behind the shock front, but then decoherence will de-
velop at larger radii (r∼> 300 km) when R∼> 1. Eventu-
ally at later times (tpb = 0.4, 0.6 s), since the shock has
resumed its forward motion, the region relevant for the
oscillations is at r < rsh, where R # 1. In this situ-
ation self-induced oscillations will be suppressed. From
these different snapshots we realize that R has a peculiar
non-monotonic behavior as a function of time. It sug-
gests a time-dependent pattern for the matter effects on
the self-induced transitions during the accretion phase,
namely complete–partial–complete suppression.
In order to confirm these expectations, we have per-

formed a multi-angle numerical study of the equations
for the neutrino flavor evolution in the schematic model
described in Section III. Our treatment closely follows
the one presented in Ref. [37] to which we address the
interested reader for further details. We only mention
here that in order to achieve convergence in our simu-
lations we had to simulate 103 neutrino angular modes.
In Fig. 7 we show the radial evolution of the νe survival

FIG. 7: 10.8 M! progenitor mass. Radial evolution of the
survival probability Pee for electron antineutrinos at different
post-bounce times for the multi-angle evolution in presence
of matter effects (continuous curve) and for ne = 0 (dashed
curve).

probability Pee for different post-bounce times, obtained
taking into account the effects of the SN matter profile
(continuous curve). For comparison, we show also the
results obtained setting ne = 0 (dashed curve).
In the case with ne = 0, for the given flavor asym-

metry ε∼> 0.3 we would have expected the “quasi-single
angle” behavior described in Ref. [43], where after the
onset of the conversions at r = rsync, the survival prob-
ability Pee declines smoothly approaching zero at large
radii. However, in the situation we are studying flavor
conversions develop at radii larger than what is typi-
cally shown in previous works (see, e.g., [43]). There-
fore, the evolution is more adiabatic (i.e. the evolu-
tion length scale lµ ∼ r [30]). As a consequence, ef-
fects of self-induced multi-angle decoherence have more
chances to develop in this case, producing some small
disturbance in the smooth decline of the survival proba-
bility at large radii (visible at tpb = 0.1, 0.3, 0.325 s for
r∼> 700 km). This finding is potentially interesting, how-
ever, since matter effects will anyhow dramatically alter
this picture we have not performed a systematic study
on this (sub-leading) self-induced decoherence.
Passing now to the matter case, we see that at

tpb = 0.1, 0.4, 0.6 s the flavor oscillations are completely
blocked, since R # 1 in the conversion range. For the
other three intermediate times (tpb = 0.225, 0.3, 0.325 s),
the presence of a large matter term at rsync will signifi-
cantly delay the onset of the flavor conversions with re-

matter
vacuum

Electron survival probability for 
one energy mode (IH,              )10.8 M⊙



The “halo” contribution

* For details see: J. F. Cherry et al., arXiv: 1203.1607
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Neutrino scattering and flavor transformation in supernovae
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(Dated: March 6, 2012)

We argue that the small fraction of neutrinos that undergo direction-changing scattering outside of
the neutrinosphere could have significant influence on neutrino flavor transformation in core-collapse
supernova environments. We show that the standard treatment for collective neutrino flavor trans-
formation is adequate at late times, but could be inadequate in the crucial shock revival/explosion
epoch of core-collapse supernovae, where the potentials that govern neutrino flavor evolution are
affected by the scattered neutrinos. Taking account of this effect, and the way it couples to entropy
and composition, will require a new paradigm in supernova modeling.

PACS numbers: 05.60.Gg,13.15.+g,14.60.Pq,26.30Hj,26.30Jk,26.50+x,97.60.Bw

In this letter we point out a surprising feature of neu-

trino flavor transformation in core-collapse supernovae.

These supernovae have massive star progenitors which

form cores which collapse to nuclear density and pro-

duce proto-neutron stars. The gravitational binding en-

ergy released, eventually some ∼ 10% of the rest mass

of the neutron star, is emitted as neutrinos of all fla-

vors in a time window of a few seconds. Diverting a

small fraction of this neutrino energy into heating can

drive revival of the stalled core bounce shock [1–7] creat-

ing a supernova explosion and setting the conditions for

the synthesis of heavy elements [4, 6–9]. However, the

way neutrinos interact in this environment depends on

their flavors, necessitating calculations of neutrino flavor

transformation. These calculations show that neutrino

flavor transformation has a rich phenomenology, includ-

ing collective oscillations [10–38], which can affect im-

portant aspects of supernova physics [15, 16, 19–23, 27–

29, 31, 32, 39–43]. For example, neutrino-heated heavy

element r-process nucleosynthesis [44–48] and potentially

supernova energy transport above the core and the ex-

plosion itself [11, 37, 49] could be affected.

All collective neutrino flavor transformation calcula-

tions employ the “Neutrino Bulb” model, where neutrino

emission is sourced from a “neutrinosphere”, taken to be

a hard spherical shell from which neutrinos freely stream.

This seems like a reasonable approximation because well

above the neutrinosphere scattered neutrinos comprise

only a relatively small fraction of the overall neutrino

number density. However, this optically thin “halo” of

scattered neutrinos nonetheless may influence the way

flavor transformation proceeds. This result stems from a

combination of the geometry of supernova neutrino emis-

sion, as depicted in Fig. 1, and the neutrino intersection

angle dependence of neutrino-neutrino coupling.

Neutrinos are emitted in all directions from a neutri-

nosphere of radius Rν , but those that arrive at a loca-

tion at radius r, and suffer only forward scattering, will

be confined to a narrow cone of directions (dashed lines

in Fig. 1) when r � Rν . In contrast, a neutrino which

suffers one or more direction-changing scattering events

Rν

r
θik

νkνk�

νi

νj

θij

θia

FIG. 1: Supernova neutrino emission geometry.

could arrive at the same location via a trajectory that

lies well outside this cone.

Following neutrino flavor evolution in the presence of

scattering, in general, requires a solution of the quan-

tum kinetic equations [50–52]. However, the rare na-

ture of the scattering that generates the halo suggests

a separation between the scattering-induced and coher-

ent aspects of neutrino flavor evolution. In the coherent

limit the neutrino-neutrino Hamiltonian, Ĥνν , couples

the flavor histories for neutrinos on intersecting trajec-

tories [33, 44, 50, 53]. As shown in Fig. 1, a neutrino

νi leaving the neutrinosphere will experience a potential

given by a sum over neutrinos and antineutrinos located

at the same point as neutrino νi:

Ĥνν =

√
2GF

�

a

(1− cos θia)nν,a |ψν,a� �ψν,a|

−
√
2GF

�

a

(1− cos θia)nν̄,a |ψν̄,a� �ψν̄,a|, (1)

where the flavor state of neutrino νa is represented by

|ψν,a�, and θia is the angle of intersection between νi

and neutrino or antineutrino νa/ν̄a. Here nν,a is the lo-

cal number density of neutrinos in state a, and the 1 −
cos θia factor disfavors small intersection angles, thereby

suppressing the potential contribution of the forward-

scattered-only neutrinos [10, 11]. Direction-altered scat-
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FIG. 3: Left: Color scale indicates the density within the shock front in a 15M⊙ progenitor core-collapse supernova 500ms

after core bounce, during the shock revival epoch [57]. Right: Effect of the scattered neutrino halo for the matter distribution

at Left. Color scale indicates the ratio of the sum of the maximum (no phase averaging) magnitudes of the constituents of the

neutrino-neutrino Hamiltonian, |Ĥbulb
νν |+ |Ĥhalo

νν |, to the contribution from the neutrinosphere |Ĥbulb
νν |.

(e.g., the red curve in Fig. 2), in general, exhibit an av-
erage density profile that is ∝ r

−(2 to 3), which means
that |Ĥhalo

νν |/|Ĥbulb
νν | is expected to increase with radius.

Note, however, that though the relative contribution of
the halo may grow with radius, at sufficiently large dis-
tance from the proto-neutron star the neutrino-neutrino
potential ceases to be physically important.

Matter inhomogeneity, an essential feature of super-
nova explosion models [4–7, 57, 62, 63], adds complexity
to this issue. To study this effect we use the 2D mat-
ter density distribution, Fig. 3, taken from a supernova
model derived from a 15M⊙ progenitor [57]. This snap-
shot corresponds to 500ms after core bounce, during the
shock revival epoch, after the onset of the SASI [4, 5].
We mock up a full 3D density profile by cloning the 2D
profile into a 3D data cube. Starting with an initial flux
of neutrinos from the neutrinosphere [64], and taking all
baryons to be free nucleons, we use the full energy de-
pendent neutral current neutrino-nucleon scattering cross
sections [65] to calculate the number flux of neutrinos
scattered out of each spatial zone and into every other
spatial zone (retaining the necessary information about
relative neutrino trajectories between zones). We com-
pute the magnitude of |Ĥhalo

νν | at each location in the 2D
slice that comprises the original density distribution.

In this example calculation the scattered halo is taken
to be composed of neutrinos which have suffered only a
single direction-changing scattering. Because the halo re-

gion is optically thin for neutrinos, multiple scatterings
become increasingly rare with radius and do not have a
geometric advantage in their contribution to |Ĥhalo

νν | rel-
ative to singly-scattered neutrinos. Neutrinos which ex-
perience direction-changing scattering that takes them
into the same cone of directions as neutrinos forward
scattering from the neutrinosphere are counted as con-
tributing to the halo (these neutrinos contribute ∼ 10−6

of the halo potential). As before, we neglect the effects
of neutrino flavor oscillations. Fig. 3 shows the results
of this calculation out to a radius of r = 2000 km. Dis-
turbingly, neutrinos from the scattered halo in this 2D
model nowhere contribute a maximum magnitude less
than 14% of the neutrino-neutrino potential magnitude,
and in many places contribute 90% or more of the total.
Fig. 3 shows that matter inhomogeneities generate large
corresponding scattered halo inhomogeneities.

The inhomogeneity of the scattered halo is increased
by several scattering processes which have been omitted
from this illustrative calculation. We did not include
neutrino-electron scattering. This scattering process has
smaller cross sections and relatively forward peaked an-
gular distributions and therefore produces a subdominant
contribution to |Ĥhalo

νν |. What is more important is that
our calculation leaves out what is likely the dominant
source of neutrino direction-changing scattering in the
low entropy regions of the supernova envelope: coherent
neutrino-nucleus neutral current scattering.

During the accretion phase, collective interactions might be affected by the contribution of non-
forward scattered neutrinos. How does the “halo” change the collective-oscillation paradigm?

The “halo” contribution 
might be relevant only at 
large radii (r ~ 1000 km).



The “halo” contribution

* For details see: S. Sarikas, I. Tamborra, G. Raffelt, L. Huedepol, T. Janka, arXiv: 1204.0971
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Neutrinos streaming from a supernova (SN) core occasionally scatter in the envelope, producing
a small “neutrino halo” with a much broader angle distribution than the primary flux originating
directly from the core. Cherry et al. (2012) have recently pointed out that, during the accretion
phase, the halo actually dominates neutrino-neutrino refraction at distances exceeding some 100 km.
However, the multi-angle matter effect (which increases if the angle distribution is broader) still
appears to suppress self-induced flavor conversion during the accretion phase.

PACS numbers: 14.60.Pq, 97.60.Bw

I. INTRODUCTION

Neutrino-neutrino refraction is responsible for the in-
triguing effect of self-induced flavor conversion that can
occur in the neutrino flux streaming from a SN core. In
this context, the angular neutrino distribution plays a
crucial role. The current-current structure of low-energy
weak interactions implies that the interaction energy be-
tween two relativistic particles involves a factor (1−cos θ)
where θ is their relative direction of motion.

If the neutrino-emitting region of a supernova (SN)
core (“neutrino sphere”) has radius R, then at distances
r " R a typical neutrino-neutrino angle is θ ∼ R/r and
〈1 − cos θ〉 ∝ (R/r)2. The geometric flux dilution pro-
vides another factor (R/r)2, leading to an overall (R/r)4

decrease of the neutrino-neutrino interaction energy.

In a recent paper, Cherry et al. (2012) have pointed out
that this picture is not complete because, on their way
out, neutrinos suffer residual collisions [1]. Every layer of
matter above the neutrino sphere is a secondary source,
producing a wide-angle “halo” for the forward-peaked
primary flux. While the halo flux is small, its broad
angular distribution allows it to dominate the neutrino-
neutrino interaction energy.

We illustrate the halo with a numerical example, the
280 ms post-bounce snap shot of a spherical 15M!
model, that we recently used as our benchmark case for
the study of multi-angle suppression of self-induced fla-
vor conversion [2]. In Fig. 1 we show the intensities for
the ν̄e radiation field, normalized to the forward direc-
tion, measured at the radial distances 100, 300, 1000,
3000, and 10,000 km. (The angular distributions become
noisy for θ >∼ π/2 and are currently not well provided by
our simulations.) The core and halo fluxes are two dis-
tinct components, the latter so small that it is not visible
on a linear plot. If we use θc ≈ 0.3 as the edge of the
core distribution for the 100 km case, we infer a radius
of R ∼ 30 km for the region where neutrinos begin to
stream almost freely. At larger distances, the angular
scales are squeezed by a factor R/r.

The impact on neutrino-neutrino refraction is illus-
trated by the weak potential felt by a radially-moving
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FIG. 1: Intensities for the ν̄e radiation field of our numerical
model, normalized to the forward direction, measured at the
radial distances 100, 300, 1000, 3000, and 10,000 km (right to
left) as seen by a distant observer.

neutrino. In terms of the zenith angle θ of the intensity
distribution h(θ) we need the quantity

A = 〈1− cos θ〉 =
∫ π
0 dθ sin θ (1− cos θ)h(θ)

∫ π
0 dθ sin θ h(θ)

. (1)

For small θ, the integrand in the numerator expands as
(1 − cos θ) sin θ = θ3/2, allowing the halo to contribute
significantly at larger distances where the distributions
are more squeezed. At 1000 km, for example, 〈1− cos θ〉
is almost a factor of 10 larger than it would be without
the halo, in agreement with Cherry et al. [1]. The halo
part of the functions in Fig. 1 decrease roughly as θ−3,
implying that 〈1 − cos θ〉 decreases roughly as r−1 in-
stead of r−2, or the neutrino-neutrino interaction energy
decreases roughly as r−3 instead of r−4.

As stressed by Cherry et al., the halo is important
during the accretion phase when there is enough matter
for the primary flux to scatter [1]. However, the same
high matter density tends to suppress the self-induced
flavor instability [3]. During the early accretion phase,
self-induced flavor conversions were found to be typically
suppressed [2, 4]. Does the halo change these conclu-
sions? Its importance derives from its broad angle distri-

300 km

3.000 km

1.000 km

Angular emission     spectra for a SN 
                     with 

ν̄e
15M⊙, 280 ms

core-flux
from the nu-sphere

halo-flux
from scattering

Relative importance of the halo for the 
self-interaction potential

forward eff. potential:

larger distances, the halo becomes important and the scaling
turns approximately to r!1. If the halodistributionwould scale
as !!3 wewould expect precisely r!1, but our fit corresponds
to Ið!Þ / !!2:86, explaining the less steep variation.

In Fig. 5 we show the enhancement of h1! cos!i caused
by the halo, where we attribute the first part of the analytic
fit of Eq. (2) to the core. The enhancement caused by the
halo scales almost linearly at large distances. At
r$ 1000 km the enhancement is about a factor of 8,
roughly in agreement with Cherry et al. [7].

D. Analytic halo estimate

For an analytic estimate, we consider a total neutrino
production rate ! ¼ L=hEi emitted from a pointlike
source (neutrino luminosity L). It traverses a spherical
matter distribution, which we model as a decreasing power
law of the form nðrÞ ¼ nRðR=rÞm. We assume that multiple
scatterings can be neglected. Every spherical shell is a
neutrino source from scattering the primary flux. For the
scattering cross section, we assume the form d"=d" ¼
"scattð1þ a cos#Þ=4#, where # is the scattering angle.
Elementary geometry (see the Appendix) reveals that at
distance r we expect a scattering flux (halo) of

I ðr;!Þ¼!"scattnR
ð4#Þ2R

!
R

rsin!

"
mþ1Z #

!
d#ð1þacos#Þsinm#:

(4)

For small angles, we find a power law Iðr;!Þ / !!ðmþ1Þ,
whereas the large-angle and backward flux depend on the
detailed cross-section angular dependence.
In our numerical example, the density outside the shock

wave (at about 70 km) decreases roughly as r!1:35 out to
about 5000 km. With m ¼ 1:35 we expect the halo to vary
as !!2:35 as indicated in Fig. 2. While it would not provide
a good global fit, it looks excellent for about the first
decade of angles of the halo.
Based on the analytic expression for Iðr; !Þ we can

estimate the inward-going flux. It is very small compared
to the outward-going core flux, but its contribution to
refraction need not be small. We consider a region at
sufficiently large radius where neutrino-neutrino refraction
is dominated by the halo and ask which fraction is caused
by inward-going neutrinos, i.e., which fraction of the in-
tegral in Eq. (1) is contributed by #=2< ! ' #. For
sufficiently small power-law index m this fraction does
not depend on the radius r (to lowest order). Coherent
neutrino-nucleus scattering is forward peaked and we use
a ¼ 1. For m ¼ 1 the contribution of the backward flux is
25%, for m ¼ 2 it is approximately 16%.

III. STABILITYANALYSIS

All previous studies of collective flavor oscillations of
SN neutrinos used the free-streaming approximation: it
was assumed that collisions play no role in the relevant
stellar region. On the other hand, the halo dominates
neutrino-neutrino refraction at larger radii, so in some
sense the free-streaming assumption gets worse with dis-
tance, not better. Therefore, in order to understand collec-
tive flavor conversion in this region, one may have to
rethink the overall approach [7].
On the other hand, the multiangle matter effect may still

suppress the onset of collective flavor conversions, at least
in some accretion-phase models. A linearized stability
analysis would still be possible and self-consistent. If
self-induced flavor conversions have not occurred up to

TABLE I. Average h1! cos!i for !c ( 1 and different p.

Power p h1! cos!i
1 1

4 !
2
c

p > 4 p!2
p!4

!2c
4

4 ð1:1897! 2 log!cÞ !
2
c
4

3 0:540 33!c
2 1:5788

1:9929!2 log!c

1 0.617 12
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FIG. 5 (color online). Same as Fig. 4, now showing the en-
hancement caused by the halo, i.e., the ratio total=core contribu-
tion, where the core flux is attributed to the first term in Eq. (2).

100 101 102 103 10410 4

10 3

10 2

10 1

100

Radius km

1
co

s

r 1.8

r 0.85

FIG. 4 (color online). Average h1! cos!i for our analytic
angle distribution of Eq. (2), representing the 280 ms numerical
model.
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V νν
nf ∝ r−3

V νν
f ∝ r−4

non-forward eff. potential:

Analytical estimations on one Garching model (          , accretion): multi-angle matter 
suppression even after including the halo. 

Attention! The halo might still affect flavor conversions for slightly low mass SNe 
or late accretion phase. More detailed analysis and numerical approaches are needed!

15M⊙



Exploiting the neutronization burst....
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* For details see: Kachelriess et al., arXiv: astro-ph/0412082.

Assuming the mixing 
scenario is known, we 
can use the 
neutronization burst to 
determine the SN 
distance.



Exploiting the accretion phase ....

* For details see: P.D. Serpico et al., arXiv: 1111.4483, Abbasi et al., arXiv: 1108.0171.

A high-statistics measurement of the rise-time shape may distinguish the two scenarios!

Available SN models suggest that one could 
unambiguously attribute the shape to NH or IH type (rise-
time shapes robustly predicted). The correct hierarchy 
could be identified in 99% of the cases. 
Is this true for all SN models?

The rise-time in IH is always faster than the NH one!

Because of the multi-angle matter suppression during the accretion phase and for large      , 
one has

θ13

FD
ν̄e

= cos2 θ12Fν̄e + sin2 θ12Fν̄x

FD
ν̄e

= Fν̄x

in NH

in IH

Icecube

Instrumentation of 1 km antarctic 
ice with ~5000 photomultipliers
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FIG. 3: Left Panel: average SN count rate signal in IceCube assuming a distance of 10 kpc, based on the simulations for a
15 M! progenitor mass from the Garching group. Right panel: illustrative example of the binned signal using 2 ms bins with
typical Poisson error estimates accounting for the signal plus photomultiplier background noise, whose average value is shown
as dot-dashed curve. A large ϑ13 is assumed here and in the following (see text for details).

The difference between the observed neutrino lightcurve in the NH vs. IH is evident. Note how the NH case
continues to grow steadily over the considered timescale, while the IH signal reaches quite quickly an almost constant
count rate. In the case of IH, the lightcurve has a more sudden rise. Note that both luminosity behavior and trend of
growing energy of νe shown in Fig. 1 contribute to the final shape of the curves. Also, note that despite the relatively
large differences existing over very early timescales (10-20 ms, as already shown in [26]), one can already expect that
integrating the signal over a longer timescales will be needed to beat statistical errors.
It is useful to compare the analogous behaviors for the whole set of models, a task which will be made easier by

a(n irrelevant) rescaling to the rate measured at the end of the time interval considered, R(t)/R(tend). Also, for the
following statistical analysis, it is useful to introduce cumulative time distributions K(x), defined in terms of R(t) as

K(x) =

∫ x tend
0 dtR(t)
∫ tend
0 dtR(t)

, (11)

which is a dimensionless function satisfying K(0) = 0, K(1) = 1, with x ∈ [0, 1]. In Fig. 4, we illustrate the count
rate functions RA

i (t) and the cumulative functions KA
i (x) for the different models considered, with i = 1, . . . , N ≡ 10

labeling the simulation and A (or in general capital latin letters) being the index related to the hierarchy, i.e. A =NH
(red, bottom curves) or A =IH (blue, top curves). In particular, we used the nine 1D SN models shown in Fig. 1 and a
2D SN model with a 15 M! progenitor mass. Note that the difference between the two hierarchies is a shape difference
(as should be clear already from Fig. 1), rather than a mere overall difference in average energies, for example, as in
some past proposals for SN physical diagnostics. Also note that this difference is quite independent of the progenitor
used (most notably of its mass) and, in agreement with expectations, do not show a significant dependence from the
dimensionality of the simulation either.

A. Metric in Function Space

We now turn to assigning a quantitative meaning to the distance among models. To that purpose, we must introduce
some metric in the function space. We choose the so-called D∞ metric, so that the distance between the predictions
(always a number between 0 and 1) writes:

D∞(KA
i ,KB

j ) = max
x∈[0;1]

∣

∣KA
i (x)−KB

j (x)
∣

∣ . (12)

This choice is solely dictated by the standard practice in experimental physics to use Kolmogorov–Smirnov statistic
(which uses that metric) to test whether two underlying one-dimensional distributions differ. We emphasize, however,



Exploiting the accretion phase ....
Next generation large scale argon detectors could be very useful for SN neutrinos.

5-100 kton Liquid Argon TPC

* For details see: I. Gil-Botella and A. Rubbia, hep-ph/0307244. K. Abe et al., arXiv: 1109.3262.
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EXECUTIVE SUMMARY

FIG. 1. Schematic view of the Hyper-Kamiokande detector.

Hyper-(and Super)Kamiokande

the neutronization burst
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At “large” !13 (like recently measured!):
 •  The peak   is not seen   The hierarchy is normal (if one could see it...)

•  The peak   is  seen   The hierarchy is inverted (more robust)
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FIG. 57. Expected event rate at the time of neutronization burst for a supernova at 10 kpc. Red and green

show event rates for νe-scattering and inverse beta events, respectively. Solid, dotted, and dashed curved

indicate the neutrino oscillation scenarios of no oscillation, N.H., and I.H., respectively.

absolute neutrino mass does not depend on whether the neutrino is a Dirac or Majorana particle.

A sharp timing peak at the moment of neutronization is expected in νe-scattering events as

shown in Fig. 57. The expected number of νe-scattering events at the neutronization burst is ∼20,

∼56, and ∼130 for N.H., I.H., and no oscillation, respectively, for a supernova at 10 kpc. Although

the number of inverse beta events is ∼345 (N.H.), ∼700 (I.H.), and ∼190(no oscillation) in the

10 ms bin of the neutronization burst, the number of events in the direction of the supernova is

typically 1/10 of the total events. So, the ratio of signal events (νe-scattering) to other events

(inverse beta) is expected to be about 20/33 (N.H.), 52/70 (I.H.) and 130/19 (no oscillation).

Thus, the νe scattering events can be identified with high statistical significance thanks to the

directionality of νe-scattering.

Neutrino oscillations could be studied using supernova neutrino events. There are many papers

which discuss the possibility of extracting signatures of neutrino oscillations free from uncertainties

of supernova models [81, 90–98]. One big advantage of supernova neutrinos over other neutrino

sources (solar, atmospheric, accelerator neutrinos) is that they inevitably pass through very high

density matter on their way to the detector. This gives a sizable effect in the time variation of

the energy spectrum even for small sin2 θ13 [81, 91, 99]. As an example, figures from the paper

by Fogli et al. [81] are shown in Fig. 58. The propagation of the supernova shock wave causes

time variations in the matter density profile through which the neutrinos must travel. Because of



Diffuse Supernova Neutrino Background
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Why the DSNB?

* Beacom and Vagins, arXiv: hep-ph/0309300

Galactic supernova maybe rare but supernova explosions are quite common.
One supernova explosion occurs, on average, every second somewhere in the universe and 
these produce a diffuse supernova neutrino background (DSNB).

★ Detectable     flux at the Earth mostly 
from redshift z ~ 1

★ Test of supernova astrophysics

★ New frontiers for neutrino astronomy

ν̄e

Georg  Raffelt,  MPI  Physics,  Munich   ISAPP  2011,  4/8/11,  Varenna,  Italy  

Diffuse  Supernova  Neutrino  Background  (DSNB)  

Beacom  &  Vagins,      
PRL  93:171101,2004    

detection window



DSNB Detection

*See talks by Vagins at Hanse 2011 and by Beacom at Neutrino 2012.

Neutron tagging in Gd-enriched  WC detector (Super-K with 100 tons Gd to trap neutrons)

        can be identified by delayed coincidenceν̄e

e can be identified by delayed coincidence.

e

e+

2.2 MeV -rayp
n

Possibility 1: 10% or less

n+Gd ~8MeV 
T = ~30 sec

Possibility 2: 90% or more

Positron and gamma ray 
vertices are within ~50cm.

n+p

p

Gd

Neutron tagging in Gd-enriched WC Detector

ν̄e

γ

γ

ν̄e + p → n+ e+

200 ton (6.5 m X 6.5 m)
water tank (SUS304)

240 50-

Selective Water+Gd 
Filtration System Transparency

Measurement

EGADS Facility

[graphic by
A. Kibayashi]

In June of 2009 
we received
full funding

(~$4,000,000)
for this effort.

spatial and temporal separation between 
prompt positron Cherenkov light and delayed 
Gd neutron capture gamma cascade 

few clean events/yr 
in Super-K with Gd



Ingredients

cosmological 
supernova rate

cosmology
oscillated neutrino flux
corrected by redshift

[                    ]E� = E(1 + z)



The DSNB is dominated by the contribution of the closest (        ) and least massive (              ) 
stars and it depends only weakly on          and              .   

z ≤ 1 M � 8M⊙
Mmax zmax � 5

Cosmological Supernova Rate (SNR)

RSN(z,M) =

� 125M⊙
8M⊙

dM η(M)
� 125M⊙
0.5M⊙

dMMη(M)
ρ̇�(z)

star formation rateinitial mass function
(mass distribution of stars at birth)

The initial mass function                         . Therefore the flux is dominated by low mass stars.η(M) ∝ M−2.35



See for details Ando, Sato, PLB 559 (2003) 113; Lunardini, arXiv: 1007.3252.

Cosmological Supernova Rate (SNR)

total

z=0-1
z=1-2

detection energy 
window

z=2-3

The redshift correction of energy is responsible for accumulating neutrinos of higher redshift 
at lower energies. Therefore the diffuse flux is dominated by the low z contribution (        ) in 
the energy window relevant for experiments (11 <E< 40 MeV).

z ≤ 1



SNR: Measured Supernova Rate

The existing measurements of the SNR 
and their uncertainties are dominated 
by normalization errors.

See Horiuchi et al., arXiv: 1102.1977; Botticella et al., arXiv: 1111.1692.

The SNR is also given by direct SN 
observations. 

Surprisingly, the normalization from 
direct SN observations is lower than 
that from SFR data by a factor ~ 2 
and by a smaller factor at higher z. 

Why? There are missing SNe - 
they are faint, obscured, or dark.
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The third state, νx (ν̄x), is not affected by the collective evolution, therefore F c
νx(ν̄x)

= F 0

νx(ν̄x)
.

As we consider the self-induced neutrino oscillations as factorized from the MSW in
first approximation, the fluxes F c

νβ will undergo the traditional MSW conversions after ν–ν

interactions. In NH, the MSW resonance due to δm2
atm affects the νe flux while the ν̄e flux

remains almost unaffected. On the other hand for IH, the same resonance affects the ν̄e flux
and not the νe flux. The fluxes (Fνe and Fν̄e) reaching the earth after both the collective and
MSW oscillations for NH and IH and for large θ13 are [13, 53, 57]:

FNH

νe = sin2 θ12[1− Pc(F
c
νe , F

c
ν̄e , E)](F 0

νe − F 0

νy) + F 0

νy , (2.16)

FNH

ν̄e = cos2 θ12P̄c(F
c
νe , F

c
ν̄e , E)(F 0

ν̄e − F 0

νy) + F 0

νy , (2.17)

F IH

νe = sin2 θ12Pc(F
c
νe , F

c
ν̄e , E)(F 0

νe − F 0

νy) + F 0

νy , (2.18)

F IH

ν̄e = cos2 θ12[1− P̄c(F
c
νe , F

c
ν̄e , E)](F 0

ν̄e − F 0

νy) + F 0

νy . (2.19)

Here we have used the fact that, by combining Eqs. (2.14, 2.15) with
�
dE(F 0

νe −F 0
ν̄e) =

const., one can express Pc and P̄c, for each energy, as functions of the fluxes after collective
oscillations: Pc(F c

νe , F
c
ν̄e , E) and P̄c(F c

νe , F
c
ν̄e , E). These probabilities exhibit a well known

step-like behavior, that appears in the fluxes Fνe and Fν̄e as the so called “spectral splits” [28,
58]. In reality, a number of effects smooth out the splits in the observed neutrino fluxes; we
discuss this point further below.

3 Time-integrated neutrino fluxes and oscillation effects

As a first step towards the calculation of the DSNB, we compute the oscillated fluxes, Eqs.
(2.16)-(2.19), for each progenitor model, at fixed time snapshots (as an approximation of the
continuous time evolution, which is too demanding for state of the art computers). The results
are then used to obtain the νβ and ν̄β fluxes integrated over the duration of the neutrino
burst. For illustration, in this section we discuss the results for the 10.8 M⊙ progenitor; in
Sec. 4 the fluxes for all progenitors will be summed up to obtain the DSNB, via Eq. (2.1).

While the MSW effect is well described analytically, the collective effects require a
numerical calculation to obtain the probabilities Pc and P̄c. Let us discuss them here in more
detail.

The spectral split patterns (affecting Pc and P̄c) are known to be crucially dependent on
the initial relative flux densities and on the mass hierarchy. For definiteness, it is convenient
to distinguish between the probabilities in the accretion phase (tpb ≤ 1 s), and those in the
cooling phase (tpb >∼ 1 s). In the accretion phase, the multi-angle effects associated with dense
ordinary matter suppress collective effects [23–26]. Therefore, we adopt the results presented
in [23, 24] for the two-flavor system (νe, νy), considering partial or no flavor conversion for
several tpb as in [23, 24].

During the cooling phase, the fluxes of different flavors are slightly different, and spectral
splits occur for neutrinos and/or antineutrinos according to the mass hierarchy and to the
number of crossings in the non-oscillated spectra (i.e., energies where F 0

νe(E) = F 0
νx(E) and

the same for ν̄) [27]. We calculate these effects by numerically solving Eqs. (2.9) for tpb =
1, 3, 6, 9 s, for the system (νe, νy). Concerning the neutrino emission geometry, we assume a
spherically symmetric source emitting neutrinos and antineutrinos like a blackbody surface,
from a neutrinosphere with radius, Rν , that varies with tpb. We define the neutrinosphere
radius as the radius where the neutrino radiation field is half-isotropic [24, 60] and we adopt

– 7 –

Oscillated Fluxes at the Earth

Since self-induced flavor conversions and MSW resonances occur in well separated 
regions in most of the cases, we choose to factorize both the effects and treat them 
separately. 

For large       the oscillated fluxes are:θ13

neutrino-sphere 
neutrino-neutrino 

interactions MSW

Rν

R



Diffuse Supernova Neutrino Background

For details see: C. Lunardini and I. Tamborra,  arXiv: 1205.6292.
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A maximum variation of 10-20% (at                       ) is related to the mass hierarchy.E � 20 MeV

A time-dependent analysis of the neutrino signal, including three different SN progenitors 
and oscillation physics at the best of our knowledge suggests that the largest uncertainties 
on the DSNB come from astrophysics.



Diffuse Supernova Neutrino Background
★ The inclusion of time-dependent neutrino spectra is responsible for colder neutrino spectra in the 
DSNB (error ~5%).

★ The largest effect of flavor oscillations is due to MSW resonances (~50-60%), neutrino-neutrino 
interactions contribute at 5-10%. No energy-dependent signature of collective oscillations.

★ The dependence on the mass hierarchy is ~10-20% and it is stronger for antineutrinos.

★ Combining results for different progenitor stars (instead of using               spectra for all stars), 
increases the DSNB by 5-10%.

★ The DSNB is mainly affected by MSW effects and it can be used to extract astrophysical 
quantities.

★ The forthcoming detection of the DSNB will be an excellent benchmark to test models of 
neutrino spectra/emission and SNR! 

10.8M⊙

Figure 4. Energy integrated DSNB (for E > 17.3 MeV) as a function of the discussed contributions,

in black (red) for νe (ν̄e). We adopt triangles (dots) for the IH (NH) scenario. From left to right the

source of variation of the DSNB are: (a) DSNB for tpb = 0.5 s as representative of all post-bounce times

and the 10.8M⊙ progenitor as representative of the whole stellar population, no oscillations; (b) DSNB

obtained considering time-dependent fluxes for the 10.8 M⊙ model, no flavor oscillations; (c) DSNB

obtained considering time-dependent fluxes for the 10.8 M⊙ model, MSW flavor conversions; (d)

DSNB obtained considering time-dependent fluxes for the 10.8 M⊙ model, MSW + ν–ν interactions;

(e,f) DSNB obtained including the whole stellar population, time-dependent fluxes, MSW + ν–ν
interactions; the difference in the two points is due to the factor of ∼ 2 between the results of SN

surveys and those of star formation measurements (see Sec. 2.2). The error bars are the errors on the

normalization of the supernova rate [3].

neutrinos and the NH, where the difference between the unoscillated and oscillated spectra

is the largest, due to the complete flavor permutation driven by the large θ13. Neutrino-

neutrino interactions (case d) are responsible for a variation of 5–10% with respect to the

MSW only case. Summing over the stellar population (case e) is responsible for a DSNB

variation of 5–10% due to the more luminous fluxes of the more massive stars. For sake of

completeness, we provide the numerical values for the DSNB for the case (e):

Φ
νe,NH

tot
= 0.31 cm

−2
s
−1

and Φ
νe,IH
tot

= 0.27 cm
−2

s
−1 , (4.1)

Φ
ν̄e,NH

tot
= 0.26 cm

−2
s
−1

and Φ
ν̄e,IH
tot

= 0.32 cm
−2

s
−1 .

The maximum impact given by the mass hierarchy is 20%, triangle and dot in (e). It is

realized for antineutrinos because, for large θ13, the high density MSW resonance is adiabatic

and the ν̄e flux changes from almost complete survival for NH (survival probability ∼ 0.7–
0.8) to almost complete conversion for IH (survival probability ∼ 0.1–0.2). We estimate the

DSNB taking into account the unexplained factor of ∼ 2 between the results of SN surveys

and those of star formation measurements as discussed in Sec. 2.2, points (e) and (f). This

mismatch is responsible for the largest astrophysical source of error on the estimation of the

DSNB, ∼ 50%. Moreover, the error on the normalization of the supernova rate is about 25%

and it is represented by the error bars in (e) and (f). However, this error could be most likely

higher once several systematic errors are included.

Another potential source of error on the DSNB is in the equation of state of nuclear

matter used in core collapse simulation (assumed fixed in all our computations). The variation

of the total neutrino energy release during the supernova explosion reflects the variation of the

gravitational binding energy of the neutron star in dependence of different nuclear equations

of state (see [66] for details). However, we expect that the differences of the time-integrated

– 12 –

For details see: C. Lunardini and I. Tamborra,  arXiv: 1205.6292.



Neutrinos and Nucleosynthesis



Which is the impact of active-active and 
active-sterile oscillations on the electron 
abundance? 

Electron fraction
A hot problem in astrophysics is the location of the r-process nucleosynthesis (rapid neutron 
capture process generating elements with A >100). 

Is the neutrino-driven matter outflow a good candidate site for the r-process nucleosynthesis 
in an electron-capture supernova?

To answer to this question, let’s consider the evolution of  the electron abundance:

Ye(r) =
Ne(r)

Ne(r) +Nn(r)

with          and          the 
effective electron and neutron 
densities.

Ne(r) Nn(r)

r (km)
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eY
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no oscillations

14.

                       more   than             r-processYe < 0.5 n p



Electron fraction evolution

νe + n → p+ e−

ν̄e + p → n+ e+

dYe

dt
= v(r)

dYe

dr
� (λνe + λe+)Y

f
n − (λν̄e + λe−)Y

f
p

and the associated reversed processes.

The electron abundance rate of change in an outflowing mass element may be written as

The electron abundance is set by the competition between the following neutrino and 
antineutrino capture rates on free nucleons

The neutrino scattering rates are functions of the neutrino fluxes and then flavor oscillations 
cannot be neglected.      is a function of the electron temperature and of the electron 
chemical potential.

λe

where        is the velocity of the outflowing mass element,   is the time parameter,     is the 
forward rate of each process, and          is the fraction of unbounded neutrons (protons).

v(r) t λα

Y f
n (p)



Light sterile neutrinos in supernovae

νe − νs

★ Reactor     spectra are interpreted assuming the existence of     with mixing 
parameters                                                  .*

★ In a supernova, such parameters induce MSW            conversions sensitively 
affecting the neutrino energy spectra. 

★ A decrease of the     flux by            oscillations increases the neutron abundance 
and thus it can enable the r-nucleosynthesis **.

★ Using the new electron-capture supernova hydrodynamical simulations, we analyze 
(2 active+1 sterile) scenario with the anti-reactor mixing parameters.

ν̄e νs
(sin2 2θ,∆m2

s) � (0.14, 1.5 eV2)

νe − νsνe

*  Mention et al., PRD 83 (2011) 073006, Huber, PRC 84 (2011) 024617.
** See Fetter et al., Astrop. Phys. 18 (2003) 433, PRC 59 (1999) 2873 and references therein. 

less                 more                   decreasesνe n Ye



Sterile Neutrinos and Supernovae

* I. Tamborra, G. Raffelt, L. Huedepohl, H.-T. Janka, arXiv: 1110.2104.

Light sterile neutrinos could also affect the element formation in supernovae 
(impact on the r-process).    

r (km)
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eY
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m, with sterile

no oscillations (Garching)
m + nu, no sterile

m + nu, with sterile

14.5

t = 6.5 s electron abundance in 
absence of neutrino 

oscillations

electron abundance in 
presence of oscillations, 

with eV-mass sterile 
neutrinos

            , electron-capture supernova 8.8 M⊙



Neutrinos and r-process

Oscillations do not drive the 
electron abundance below 0.5.

The alpha-effect is very strong.

Nucleosynthesis is very 
sensitive to neutrino 
oscillations, although the 
r-process is not enabled.

Asymptotic values of the electron abundance in 
presence of active-active and active-sterile 

oscillations

0 1 2 3 4 5 6 7 8
t
pb

 [s]

0.52

0.54

0.56

0.58

0.6

Y
e

active 
sterile 

*  E. Plumbii, I. Tamborra, S. Wanajo, T.-H. Janka, in preparation 

Caution! Extension to several progenitors required.



Conclusions

★ Collective neutrino interactions are not negligible in neutrino dense media as SNe.

★ The features of the oscillated neutrino fluxes are strictly dependent on the neutrino 
angular distribution, flux hierarchies and mass hierarchy.
 
★ More supernova models needed to extract the standard features of the expected neutrino 
signal. More details on the neutrino-angle distributions needed.

★ De-leptonization burst and accretion phase: large differences among the neutrino fluxes. 
SN as standard candles. Accretion phase as laboratory to detect the neutrino mass 
hierarchy.

★ Cooling phase: small differences among the neutrino fluxes. Relevant for nucleosynthetic 
processes. 

★ Good chances to detect the DSNB in the next future. Test for our SN astrophysics. 
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Stability analysis

* A. Banerjee, A. Dighe and G.G. Raffelt, arXiv: 1107.2308
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We apply a linearized stability analysis to simplified models of accretion-phase neutrino

fluxes streaming from a supernova. We compare the results with recent numerical studies
and find excellent agreement. This provides confidence that a linearized stability analysis
can be further applied to more realistic models.

1 Introduction

Neutrino-neutrino interactions cause the neutrino flux evolution close to a supernova (SN) core
to be nonlinear and numerically very challenging [1]. The flavor instability causing collective
flavor conversions can be suppressed by the “multi-angle matter effect” [2]. This point was
recently investigated numerically for an accretion-phase model where the matter density near
the neutrino sphere is large, using a schematic description of the neutrino fluxes [3]. On the other
hand, the flavor stability can also be investigated with a linearized stability analysis, avoiding
an explicit solution of the equations of motion [4]. We apply this method to the models of
Ref. [3] and find excellent agreement of the stable regime identified with either method.

2 Linearized stability analysis

We describe the neutrino flavor evolution in terms of matrices ΦE,u,r where the diagonal ele-
ments are the usual total number fluxes and the off-diagonal elements encode phase informa-
tion [2, 5]. We label the angular dependence with u, in close relation with the neutrino emission
angle ϑR at the inner boundary radius R, u = sin2 ϑR = (1− cos2 ϑr) r2/R2. For semi-isotropic
emission at a “neutrino sphere” with radius R, the flux is uniformly distributed on 0 ≤ u ≤ 1.
The equations of motion are i∂rΦE,u,r = [HE,u,r,ΦE,u,r], with the Hamiltonian [4]

HE,u,r =

(

M2

2E
+
√
2GFN!

)

1

vu,r
+

√
2GF

4πr2

∫ 1

0

du′

∫ +∞

−∞

dE′

(

1

vu,rvu′,r
− 1

)

ΦE′,u′,r ,

where M2 is the neutrino mass-squared matrix, N! the matrix of net charged-lepton densities
which in the flavor basis is N! = diag(ne−nē, nµ−nµ̄, nτ−nτ̄ ) and vu,r is the radial projection of
neutrino velocity at the radius r. Antineutrinos are represented through negative-energy modes
(E < 0) and negative negative fluxes in the matrices ΦE,u,r. This sign convention simplifies
the formalism and obviates any distinction between neutrinos and antineutrinos.
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�E,u =
Tr�E,u

2
+

F νe
E,u,R − F νx

E,u,R

2
SE,u

Henceforth we drop the explicit subscript r to denote the r-dependence of all quantities. In
the two flavor scenario one can write:

ΦE,u =
TrΦE,u

2
+

F e
E,u,R − F x

E,u,R

2
SE,u ,

where F e,x
E,u are the differential neutrino fluxes at the inner boundary radius R for the e and x

flavors. The flux summed over all flavors, TrΦE,u, drops out of the equations of motion and is
conserved in our free-streaming limit. The “swapping matrix”

SE,u =

(

sE,u SE,u

S∗
E,u −sE,u

)

,

encodes the flavor evolution with initial conditions s = 1 and S = 0.
We expand the Hamiltonian for large distances from the core and small mixing angle. After

dropping its trace we find

Hvac
E,u =

M2

2E
v−1
u → ±

ω

2

(

cos 2θ sin 2θ
sin 2θ − cos 2θ

)

v−1
u → ±

ω

2

(

1 0
0 −1

) (

1 +
u

2

R2

r2

)

,

Hm
E,u =

√
2GF

(

ne−nē 0
0 0

)

v−1
u →

λ̃

2

(

1 0
0 −1

) (

1 +
u

2

R2

r2

)

,

Hνν
E,u →

√
2GF R2

4πr4

∫ 1

0

du′ u+ u′

2

∫ +∞

−∞

dE′
F e
E,u,R − F x

E,u,R

2
SE′,u′ .

where λ̃ =
√
2GF (ne−nē). We write the neutrino-neutrino part concisely in the form Hνν

E,u ≡
µr

∫ 1

0
du′ 1

2
(u + u′)

∫ +∞

−∞
dE′ gE,u SE′,u′ , where µr = µR R4/2r4 encodes the strength of the

neutrino-neutrino interaction with the parameter µR =
√
2GF(F

ν̄e
R − F νx

R )/4πR4. We further
define the dimensionless flavor difference spectrum gE,u = (F e

E,u,R − F x
E,u,R)/(F

ν̄e
R − F νx

R ) with

the normalization in the antineutrino sector
∫ 0

−∞
dE

∫ 1

0
du gE,u = −1. The integration over

neutrinos (positive energies) gives
∫∞

0
dE

∫ 1

0
du gE,u = (F νe

R − F νx
R )/(F ν̄e

R − F νx
R ) ≡ 1 + ε, with

ε being asymmetry of the spectra.
Next we expand the equations in the small-amplitude limit |S| % 1 which implies, to linear

order, s = 1. After switching to the variable ω = ∆m2/2E for the energy modes one finds [4]

i∂rSω,u = [ω + u(λ+ εµ)]Sω,u − µ

∫

du′ dω′ (u+ u′) gω′u′ Sω′,u′ .

Here λ = λ̃R2/2r2 encodes the imprint of multi-angle matter effect. Except for the additional
two powers of r−1 this quantity describes the SN density profile and scales approximately as
µr ∝ r−4.

Writing solutions of the linear differential equation in the form Sω,u = Qω,u e−iΩr with
complex frequency Ω = γ + iκ and eigenvector Qω,u leads to the eigenvalue equation [4],

(ω + uλ̄− Ω)Qω,u = µ

∫

du′ dω′ (u+ u′) gω′u′ Qω′,u′ ,

where λ̄ ≡ λ+εµ. The solution has to be of the form Qω,u = (A+Bu)/(ω+uλ̄−Ω). Solutions
exist if µ−1 = I1 ±

√
I0I2, where In =

∫

dω du gω,u un/(ω + uλ̄−Ω). The system is stable if all
Ω are purely real. A possible imaginary part, κ, is the exponential growth rate.
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order, s = 1. After switching to the variable ω = ∆m2/2E for the energy modes one finds [4]
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∫

du′ dω′ (u+ u′) gω′u′ Sω′,u′ .

Here λ = λ̃R2/2r2 encodes the imprint of multi-angle matter effect. Except for the additional
two powers of r−1 this quantity describes the SN density profile and scales approximately as
µr ∝ r−4.

Writing solutions of the linear differential equation in the form Sω,u = Qω,u e−iΩr with
complex frequency Ω = γ + iκ and eigenvector Qω,u leads to the eigenvalue equation [4],

(ω + uλ̄− Ω)Qω,u = µ

∫

du′ dω′ (u+ u′) gω′u′ Qω′,u′ ,

where λ̄ ≡ λ+εµ. The solution has to be of the form Qω,u = (A+Bu)/(ω+uλ̄−Ω). Solutions
exist if µ−1 = I1 ±

√
I0I2, where In =

∫

dω du gω,u un/(ω + uλ̄−Ω). The system is stable if all
Ω are purely real. A possible imaginary part, κ, is the exponential growth rate.
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with the swapping matrix

We expand the Hamiltonian for large distances from the core and small mixing angles

A powerful method to check whether flavor conversions are occurring during the accretion 
phase is the stability analysis criterion.

i∂r�E,u,r = [HE,u,r, �E,u,r]

Let us define                     ,                                                        and        the radial velocity. The 
Hamiltonian and the density matrix in terms of these variables are 

ω = ∆m2/2Ear
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We apply a linearized stability analysis to simplified models of accretion-phase neutrino

fluxes streaming from a supernova. We compare the results with recent numerical studies
and find excellent agreement. This provides confidence that a linearized stability analysis
can be further applied to more realistic models.

1 Introduction

Neutrino-neutrino interactions cause the neutrino flux evolution close to a supernova (SN) core
to be nonlinear and numerically very challenging [1]. The flavor instability causing collective
flavor conversions can be suppressed by the “multi-angle matter effect” [2]. This point was
recently investigated numerically for an accretion-phase model where the matter density near
the neutrino sphere is large, using a schematic description of the neutrino fluxes [3]. On the other
hand, the flavor stability can also be investigated with a linearized stability analysis, avoiding
an explicit solution of the equations of motion [4]. We apply this method to the models of
Ref. [3] and find excellent agreement of the stable regime identified with either method.

2 Linearized stability analysis

We describe the neutrino flavor evolution in terms of matrices ΦE,u,r where the diagonal ele-
ments are the usual total number fluxes and the off-diagonal elements encode phase informa-
tion [2, 5]. We label the angular dependence with u, in close relation with the neutrino emission
angle ϑR at the inner boundary radius R, u = sin2 ϑR = (1− cos2 ϑr) r2/R2. For semi-isotropic
emission at a “neutrino sphere” with radius R, the flux is uniformly distributed on 0 ≤ u ≤ 1.
The equations of motion are i∂rΦE,u,r = [HE,u,r,ΦE,u,r], with the Hamiltonian [4]

HE,u,r =

(

M2

2E
+
√
2GFN!

)

1

vu,r
+

√
2GF

4πr2

∫ 1

0

du′

∫ +∞

−∞

dE′

(

1

vu,rvu′,r
− 1

)

ΦE′,u′,r ,

where M2 is the neutrino mass-squared matrix, N! the matrix of net charged-lepton densities
which in the flavor basis is N! = diag(ne−nē, nµ−nµ̄, nτ−nτ̄ ) and vu,r is the radial projection of
neutrino velocity at the radius r. Antineutrinos are represented through negative-energy modes
(E < 0) and negative negative fluxes in the matrices ΦE,u,r. This sign convention simplifies
the formalism and obviates any distinction between neutrinos and antineutrinos.
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Stability analysis

Henceforth we drop the explicit subscript r to denote the r-dependence of all quantities. In
the two flavor scenario one can write:

ΦE,u =
TrΦE,u

2
+

F e
E,u,R − F x

E,u,R

2
SE,u ,

where F e,x
E,u are the differential neutrino fluxes at the inner boundary radius R for the e and x

flavors. The flux summed over all flavors, TrΦE,u, drops out of the equations of motion and is
conserved in our free-streaming limit. The “swapping matrix”

SE,u =

(

sE,u SE,u

S∗
E,u −sE,u

)

,

encodes the flavor evolution with initial conditions s = 1 and S = 0.
We expand the Hamiltonian for large distances from the core and small mixing angle. After

dropping its trace we find

Hvac
E,u =

M2

2E
v−1
u → ±

ω

2

(

cos 2θ sin 2θ
sin 2θ − cos 2θ

)

v−1
u → ±

ω

2

(

1 0
0 −1

) (

1 +
u

2

R2

r2

)

,

Hm
E,u =

√
2GF

(

ne−nē 0
0 0

)

v−1
u →

λ̃

2

(

1 0
0 −1

) (

1 +
u

2

R2

r2

)

,

Hνν
E,u →

√
2GF R2

4πr4

∫ 1

0

du′ u+ u′

2

∫ +∞

−∞

dE′
F e
E,u,R − F x

E,u,R

2
SE′,u′ .

where λ̃ =
√
2GF (ne−nē). We write the neutrino-neutrino part concisely in the form Hνν

E,u ≡
µr

∫ 1

0
du′ 1

2
(u + u′)

∫ +∞

−∞
dE′ gE,u SE′,u′ , where µr = µR R4/2r4 encodes the strength of the

neutrino-neutrino interaction with the parameter µR =
√
2GF(F

ν̄e
R − F νx

R )/4πR4. We further
define the dimensionless flavor difference spectrum gE,u = (F e

E,u,R − F x
E,u,R)/(F

ν̄e
R − F νx

R ) with

the normalization in the antineutrino sector
∫ 0

−∞
dE

∫ 1

0
du gE,u = −1. The integration over

neutrinos (positive energies) gives
∫∞

0
dE

∫ 1

0
du gE,u = (F νe

R − F νx
R )/(F ν̄e

R − F νx
R ) ≡ 1 + ε, with

ε being asymmetry of the spectra.
Next we expand the equations in the small-amplitude limit |S| % 1 which implies, to linear

order, s = 1. After switching to the variable ω = ∆m2/2E for the energy modes one finds [4]

i∂rSω,u = [ω + u(λ+ εµ)]Sω,u − µ

∫

du′ dω′ (u+ u′) gω′u′ Sω′,u′ .

Here λ = λ̃R2/2r2 encodes the imprint of multi-angle matter effect. Except for the additional
two powers of r−1 this quantity describes the SN density profile and scales approximately as
µr ∝ r−4.

Writing solutions of the linear differential equation in the form Sω,u = Qω,u e−iΩr with
complex frequency Ω = γ + iκ and eigenvector Qω,u leads to the eigenvalue equation [4],

(ω + uλ̄− Ω)Qω,u = µ

∫

du′ dω′ (u+ u′) gω′u′ Qω′,u′ ,

where λ̄ ≡ λ+εµ. The solution has to be of the form Qω,u = (A+Bu)/(ω+uλ̄−Ω). Solutions
exist if µ−1 = I1 ±

√
I0I2, where In =

∫

dω du gω,u un/(ω + uλ̄−Ω). The system is stable if all
Ω are purely real. A possible imaginary part, κ, is the exponential growth rate.
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Sω,u = Qω,ue
−iΩr

with                      and the eigenvector equation Ω = γ + iκ
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where F e,x
E,u are the differential neutrino fluxes at the inner boundary radius R for the e and x

flavors. The flux summed over all flavors, TrΦE,u, drops out of the equations of motion and is
conserved in our free-streaming limit. The “swapping matrix”
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encodes the flavor evolution with initial conditions s = 1 and S = 0.
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This equation has solutions in the form

The solution has to be in the form

Qω,u ∝ 1

ω + uλ̄− Ω

It can be proved that an instability occurs if 

κ = Im(Ω) �= 0

Expanding in the small-amplitude limit with             and normalizing the fluxes such that                                          
                                , the equation of motion becomes

|S| � 1
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(
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Therefore if we compute    and we find a non-null value we should expect flavor conversions.κ

Note: the stability analysis only determines whether flavor conversions occur or not.



Suppression of collective oscillations during 
the accretion phase

Matter 
suppression 
of collective 

effects during 
the accretion
-only MSW-

(Basel models)

The high electron density suppresses collective flavor oscillation (no splits). Only MSW occurs.
Note that the angular distribution is crucial for the flavor-oscillation suppression! 

* For details see: S. Chakraborty et al.,  arXiv: 1104.4031, arXiv: 1105.1130, S. Sarikas et al., arXiv: 1110.5572, arXiv:
1109.3601

Electron survival probability for 
one energy mode (IH,              )
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the neutrino densities, we realize that at the different
post-bounce times considered, ne is always larger than
or comparable to nνe

− nνx
. It suggests that one cannot

ignore matter effects on self-induced flavor transforma-
tions during the accretion phase.
In order to quantify the relative strength of the electron

and neutrino densities, in Fig. 6 we show the ratio

R =
ne

nνe
− nνx

. (13)

as a function of the radial coordinate r at different
post-bounce times for tpb ∈ [0.1, 0.6] s. The range
rsync < r < rend is delimited with two vertical dashed
lines. The values of rsync and rend determine the possi-
ble range for the self-induced flavor conversions and the
shock radius rsh denotes the abrupt drop in the electron
density. Therefore, their relative position is crucial to as-
sess the impact of matter effects. In the expected oscilla-
tion range, R # 1 will imply a strong matter dominance
in the flavor conversions and thus complete suppression
of the self-induced effects. Instead, when electron and
neutrino densities are comparable (R∼> 1), decoherence
will occur for the collective oscillations.
The ratio R, being very large behind the shock front,

prevents flavor conversions in this region. However, the
ratio can go down to R∼> 1 for r > rsh, leading to matter-
induced decoherence and thus partial flavor changes.
Let us discuss in more detail what occurs at differ-

ent post-bounce time snapshots in Fig. 6. At very early
times (tpb = 0.1 s) the matter term is strongly domi-
nant also behind the shock-front (R # 1). Under these
conditions oscillations are always blocked. Then, at in-
termediate times (tpb = 0.225, 0.3 s) the matter den-
sity in the post-shock region, where flavor conversions
are possible, is dropping faster than the neutrino one.
Therefore, the ratio R drops at 1-2 in this range and
matter-induced decoherence is possible in this case. Sub-
sequently, at tpb = 0.325 s, oscillations are suppressed
behind the shock front, but then decoherence will de-
velop at larger radii (r∼> 300 km) when R∼> 1. Eventu-
ally at later times (tpb = 0.4, 0.6 s), since the shock has
resumed its forward motion, the region relevant for the
oscillations is at r < rsh, where R # 1. In this situ-
ation self-induced oscillations will be suppressed. From
these different snapshots we realize that R has a peculiar
non-monotonic behavior as a function of time. It sug-
gests a time-dependent pattern for the matter effects on
the self-induced transitions during the accretion phase,
namely complete–partial–complete suppression.
In order to confirm these expectations, we have per-

formed a multi-angle numerical study of the equations
for the neutrino flavor evolution in the schematic model
described in Section III. Our treatment closely follows
the one presented in Ref. [37] to which we address the
interested reader for further details. We only mention
here that in order to achieve convergence in our simu-
lations we had to simulate 103 neutrino angular modes.
In Fig. 7 we show the radial evolution of the νe survival

FIG. 7: 10.8 M! progenitor mass. Radial evolution of the
survival probability Pee for electron antineutrinos at different
post-bounce times for the multi-angle evolution in presence
of matter effects (continuous curve) and for ne = 0 (dashed
curve).

probability Pee for different post-bounce times, obtained
taking into account the effects of the SN matter profile
(continuous curve). For comparison, we show also the
results obtained setting ne = 0 (dashed curve).
In the case with ne = 0, for the given flavor asym-

metry ε∼> 0.3 we would have expected the “quasi-single
angle” behavior described in Ref. [43], where after the
onset of the conversions at r = rsync, the survival prob-
ability Pee declines smoothly approaching zero at large
radii. However, in the situation we are studying flavor
conversions develop at radii larger than what is typi-
cally shown in previous works (see, e.g., [43]). There-
fore, the evolution is more adiabatic (i.e. the evolu-
tion length scale lµ ∼ r [30]). As a consequence, ef-
fects of self-induced multi-angle decoherence have more
chances to develop in this case, producing some small
disturbance in the smooth decline of the survival proba-
bility at large radii (visible at tpb = 0.1, 0.3, 0.325 s for
r∼> 700 km). This finding is potentially interesting, how-
ever, since matter effects will anyhow dramatically alter
this picture we have not performed a systematic study
on this (sub-leading) self-induced decoherence.
Passing now to the matter case, we see that at

tpb = 0.1, 0.4, 0.6 s the flavor oscillations are completely
blocked, since R # 1 in the conversion range. For the
other three intermediate times (tpb = 0.225, 0.3, 0.325 s),
the presence of a large matter term at rsync will signifi-
cantly delay the onset of the flavor conversions with re-

matter
vacuum

3 Results

We aim at comparing the linearized stability analysis with the numerical solutions of Ref. [3]
who numerically solved the neutrino flavor evolution for a 10.8M! model at various post bounce
times. They confirmed the multi-angle matter suppression of self-induced flavor conversion, but
also found partial conversions at a large radius for the models 200ms ! tpb ! 300ms.

We use the same schematic half-isotropic and monochromatic spectra, leading to the simple
form gω,u = −δ(ω+ω0)+ (1+ ε) δ(ω−ω0). The integrals In can now be evaluated analytically.
Then it is easy to find a solution (γ,κ) for each pair (µ,λ). Figure 1 shows the region where
κ "= 0 for two snapshots together with the κ isocontours. We also show the “SN trajectory” in
the (µ,λ) plane, i.e. essentially the density profile as a function of radius because µr ∝ r−4.

Our results agree with the numerical solutions of Ref. [3] for all models. Whenever the
numerical solutions find no flavor conversion, our SN trajectory indeed stays clear of the unstable
regime. Conversely, when it briefly enters the unstable regime as in the left panel of Fig. 1, we
reproduce the onset radius for partial flavor conversion of Ref. [3]. The linear stability analysis
correctly explains the numerical results.
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Figure 1: Contours of κ and the trajectory of SN (thick red line) at t = 300 ms (left) and
400 ms (right) post bounce for a 10.8M! model discussed in Ref. [3].
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Figure 2: Growth rate κ and off-diagonal ele-
ment |S| for a toy model (see text).

It is interesting that in principle the SN
trajectory can enter the instability region
twice. As a toy model we consider the density
profile λ ∼ 0.43µ with half-isotropic emission
at R = 10 km and µr = 7×104 km−1 R4/2r4.
In Fig. 2 we show κ(r) and the evolution of
the off-diagonal element |S|. Indeed |S| oscil-
lates and grows in the unstable regime, only
oscillates when κ = 0, and then grows again
during the second instability crossing. It re-
mains to be seen if there are realistic density
profiles where such a multiple instability sit-
uation exists in practice.
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Application of the stability analysis

* For details see: S. Sarikas, G.G. Raffelt, L. Huedepohl, H.-T. Janka, arXiv: 1109.3601

Matter suppression 
of collective effects 
during the accretion

-only MSW-
(confirmed by 

Garching models)
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unless the off-diagonal ΦE,u elements start growing by

the self-induced instability. To find the latter we linearize

the EoM in the small off-diagonal amplitudes.

Stability condition.—We study the instability driven

by the atmospheric ∆m2 and the mixing angle θ13 � 1,

we work in the two-flavor limit, and switch to the ω =

∆m2/2E variable. We write the flux matrices in the form

Φω,u =
TrΦω,u

2
+

F e
ω,u − F x

ω,u

2

�
sω,u Sω,u

S∗
ω,u −sω,u

�
, (2)

where F e,x
ω,u are the flavor fluxes at the inner boundary

radius R. The flux summed over all flavors, TrΦω,u, is

conserved in our free-streaming limit. The νe survival

probability is
1
2 [1 + sω,u(r)] in terms of the “swap fac-

tor” −1 ≤ sω,u(r) ≤ 1. The off-diagonal element Sω,u is

complex and s2ω,u + |Sω,u|2 = 1.

The small-amplitude limit means |Sω,u| � 1 and to

linear order sω,u = 1. Assuming in addition a large dis-

tance from the source so that 1 − vu � 1, the evolution

equation linearized in Sω,u and in u is [23]

i∂rSω,u = [ω + u(λ+ εµ)]Sω,u

−µ

�
du� dω�

(u+ u�
) gω�u� Sω�,u� . (3)

Weak-interaction effects are encoded in the r-dependent
parameters with dimension energy

λ =
√
2GF [ne(r)− nē(r)]

R2

2r2
,

µ =

√
2GF [Fν̄e(R)− Fν̄x(R)]

4πr2
R2

2r2
. (4)

The factor R2/2r2 signifies that only the multi-angle im-

pact of the ν-ν and matter effects are relevant for the sta-

bility analysis, not the densities themselves. Both λ and

µ depend on R, but so does the occupied u-range: phys-
ical results do not depend on the choice of R. We choose

R = 44.7 km such that the occupied u-range is 0–1. We

normalize the ν-ν interaction strength µ to the ν̄e-ν̄x flux

difference at R, i.e.
� 0
−∞ dω

� 1
0 du gω,u = −1, but the only

physically relevant quantity is µ(r) gω,u. Our SN model

provides µ(R) = 1.73 × 104 km
−1

and an “asymmetry”

ε =
�
dω du gω,u = 0.35.

Writing solutions of the linear differential equation,

Eq. (3), in the form Sω,u = Qω,u e−iΩr with complex

frequency Ω = γ + iκ and eigenvector Qω,u leads to the

eigenvalue equation [23],

(ω+uλ̄−Ω)Qω,u = µ

�
du� dω�

(u+u�
) gω�u� Qω�,u� , (5)

where λ̄ ≡ λ + εµ. The solution has to be of the form

Qω,u = (A+Bu)/(ω+ uλ̄−Ω). Solutions exist if µ−1 =

I1 ±
√
I0I2, where In =

�
dω du gω,u un/(ω + uλ̄ − Ω).

The system is stable if all Ω are purely real. A possible

imaginary part, κ, is the exponential growth rate.

FIG. 3: Growth rate κ for our SN model as a function of µ
for various λ values as indicated.

Application to our SN model.—Ignoring the effect of

matter (λ = 0), we show κ(µ) for our 280 ms SN model

in Fig. 3. The system is essentially stable above µ of a

few 100 km−1. It is noteworthy that κ is of the same

order as a typical ω of the gω,u distribution, in our case a

few km−1. We also show κ(µ) for λ = 102 and 103 km−1

and observe a shift to larger µ-values [23].
In Fig. 4 we show contours of κ in the (µ,λ) plane. For

large µ and λ values, the system is unstable for λ ∼ µ
[23]. In other words, if the local neutrino number density

is much smaller or much larger than the local electron

density, the system is stable.

We also show the locus of [µ(r),λ(r)] along the radial

direction. Since µ(r) ∝ r−4, the red solid line in Fig. 4 is

essentially the SN density profile. The step-like feature

is the shock wave where the matter density drops by an

order of magnitude. Without matter (λ = 0), neutrinos

would enter the instability strip at µ ∼ 100, correspond-

FIG. 4: Contours for the growth rate κ in km−1. Also shown
is the profile for our SN model. The vertical axis essentially
denotes the density, the horizontal axis the radius (µ ∝ r−4).

Stability analysis
SN mass:                   , t= 280 ms  M = 15 M⊙

The high electron density suppresses collective flavor oscillation (no splits). Only MSW occurs.
Note that the angular distribution is crucial for the flavor-oscillation suppression! 



Application of the stability analysis

4

In our numerical example, the density outside the
shock wave (at about 70 km) decreases approximately
as r−1.35 out to about 5000 km. With m = 1.35 we
would expect the halo to vary as θ−2.35. We indicate
such a power law in Fig. 2 (bottom). While it would not
provide a good global fit, it looks excellent for about the
first decade of angles of the halo.

III. STABILITY ANALYSIS

All previous studies of collective flavor oscillations of
SN neutrinos used the free-streaming approximation: it
was assumed that collisions play no role in the relevant
stellar region. On the other hand, the halo dominates
neutrino-neutrino refraction at larger radii, so in some
sense the free-streaming assumption gets worse with dis-
tance, not better. Therefore, in order to understand col-
lective flavor conversion in this region, one may have to
re-think the overall approach [7].
On the other hand, the multi-angle matter effect may

well suppress the onset of collective flavor conversions, at
least in some accretion-phase models. A linearized sta-
bility analysis would still be possible and self-consistent.
If self-induced flavor conversions have not occurred up to
some radius and if the matter effect is large in that region,
then neutrinos continue to be in weak-interaction eigen-
states up to small corrections caused by oscillations with
the small in-matter effective mixing angle. Therefore, we
can use the core+halo flux at that radius as an inner
boundary condition for the subsequent evolution. Colli-
sions at smaller radii do not change the picture, except for
providing a broader angle distribution than would have
existed otherwise. Of course, we have to ignore the small
backward flux that is not included in a picture based on
outward-only streaming neutrinos.
In this spirit we repeat our linearized flavor stability

analysis [8]. However, we now do not worry about mod-
eling precisely the energy and angle distributions, but
mostly want to achieve a first insight about the role of
the halo. Therefore, we model the angle distribution ac-
cording to our analytic fit Eq. (2) which we use at all
radii, with an appropriate (distance dependent) angu-
lar cut, avoiding backward-going modes. Moreover, we
use a schematic energy distribution with mono-energetic
neutrinos for the core and halo separately. We choose
ωc = ∆m2/2Ec = 0.3 km−1 and ωh = 0.2 km−1 for the
core and halo, corresponding to energies ∼ 15 MeV for
the core and ∼ 25 MeV for the halo neutrinos.
Previously we had shown the growth rate κ (in units of

km−1) for the unstable modes. However, if such a growth
rate is large or small depends on the available distance.
In other words, at a given distance r, the instability is
important if κr " 1 and unimportant if κr # 1. In Fig. 6
we show κr as a function of radius using only the core
flux (modeled by the first term in our analytic fit) and
including the halo, in both cases ignoring the effect of
matter. The onset radius for self-induced flavor conver-

FIG. 6: Growth rate in the form of κr, ignoring the effect of
matter. Core flux only (red) and core+halo flux (blue).

sion remains unchanged, but the system is also unstable
at larger distances than it would have been otherwise. Of
course, this point is not relevant because the system can-
not reach those larger radii without already undergoing
conversions at smaller radii.

Next we include the effect of matter with an arbitrarily
chosen density. In Fig. 7 we show the instability region
of κr > 1. At every distance r we use the angular dis-
tribution appropriate for that distance, i.e. as before we
cut our global angular distribution appropriately. The
vertical axis is the assumed local electron density and
the thick black line is the true SN density profile. Using
only the core flux, we find the region of red dots where
κr > 1, corresponding to the results in Fig. 4 of our paper
Ref. [8]. After including the halo, the additional region
of blue dots becomes unstable.

We conclude that, for this example, the multi-angle
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FIG. 7: Instability region (κr > 1) in the parameter space of
radius and an assumed electron density. Core flux alone (red
points) and halo+core flux (blue points). We also show the
density profile of our 280 ms numerical model.

The multi-angle matter effect 
suppresses self-induced 
flavor conversions even after 
including the halo.
The halo might affect the 
flavor conversions for slightly 
low mass SNe or late 
accretion phase where partial 
flavor conversions are 
expected.

Stability analysis applied to a SN with                            including the “halo” contribution.15 M⊙, 280ms

core contribution

halo contribution

* For details see: S. Sarikas, I. Tamborra, G. Raffelt, L. Huedepol, T. Janka, in preparation



DSNB Detection Perspectives

For details see: C. Lunardini,  arXiv: 1007.3252.

The DSNB has not been observed yet, the most stringent limit is from 
Super-Kamiokande (SK):

φν̄e ≤ 2.8− 3.0 cm−2s−1

computed for energies above 17.3 MeV.
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The most precise way to measure the 
SNR is from data on the SFR.

The cosmic star formation history as a 
function of the redshift is pretty well 
known from data in the ultraviolet and 
far-infrared. Impressive agreement 
among results from different groups.

The SNR is proportional to the star formation rate (SFR), mass that forms stars per unit 
time per unit volume:

With these ingredients, the diffuse flux for each flavor νβ (β = e, ē, µ or τ) can be written
as [11]:

Φνβ (E) =
c

H0

� Mmax

M0

dM

� zmax

0
dz

ρ̇SN (z,M)Fνβ (E
�
,M)

�
ΩM (1 + z)3 + ΩΛ

, (2.1)

where c is the speed of light and H0 = 70 km s−1 Mpc−1 the Hubble constant; ΩM = 0.3
and ΩΛ = 0.7 are the fractions of the cosmic energy density in matter and dark energy
respectively and Fνβ (E

�
,M) is the oscillated νβ flux for a SN with progenitor mass M (see

Sec. 3). As we will see, the DSNB is dominated by the contribution of the closest (z <∼ 1)
and least massive (M ∼ M0) stars, and depends only weakly on Mmax and zmax.

Although the DSNB has not been observed yet, interesting upper limits exist. The
most stringent is on the ν̄e component of the flux, from a search of inverse beta-decay
events at Super-Kamiokande, above 17.3 MeV threshold: φν̄e

<∼ 2.8–3.0 cm−2s−1 at 90%
C.L. [32, 33]. This bound is generally consistent with predictions, excluding scenarios where
multiple parameters conspire to generate a particularly large flux [34]. Because the search at
Super-Kamiokande is background-dominated, any substantial improvement on it will require
better background subtraction. Methods involving water with Gadolinium addition [5], liq-
uid Argon [35–37], and liquid scintillator [38] are especially promising. Of these, detectors of
Megaton class will have the further advantage of high statistics, yielding up to hundreds of
events a year from the DSNB (see e.g., [7, 8]).

2.2 Cosmological supernova rate

Considering that SN progenitors are very short lived, the SNR is proportional to the Star
Formation Rate (SFR), ρ̇�, defined as the mass that forms stars per unit time per unit
volume. The relationship between the SNR and SFR is given by the Initial Mass Function
(IMF), η(M) ∝ M

−2.35 [39], which describes the mass distribution of stars at birth:

ρ̇SN (z,M) =
η(M)

�Mmax

0.5M⊙
dM Mη(M)

ρ̇�(z) . (2.2)

Recent analyses of SNR and SFR measurements [40] show that a piecewise parametrization
of ρ̇� is adequate [41]:

ρ̇� ∝
� (1 + z)δ z < 1
(1 + z)α 1 < z < 4.5 .

(1 + z)γ 4.5 < z

(2.3)

Here we adopt this function, with δ,α, γ and the normalization fixed at the best fit values [41]:

δ = 3.28, α = −0.26, γ = −7.8 and
�Mmax

M0
dM ρ̇SN (0,M) = 1.5×10−4 Mpc−3yr−1 (integrated

SNR at the present epoch). Note that, due to the redshift of energy, neutrinos of higher
redshift accumulate at lower energies, so that in the energy window relevant for experiments
(11 MeV <∼ E <∼ 40 MeV [6, 32]) the diffuse flux is dominated by the low z contribution,
z <∼ 1. Therefore, its dependence on α and γ is weak. The flux is also dominated by the
lower mass stars, considering the fast decline of the IMF with M , so that there is a strong
dependence on M0, but a weak one on the high cutoff Mmax.

Let us now comment on the existing measurements of the SNR and their uncertainties,
which are dominated by normalization errors [3, 40]. Perhaps the most precise way to measure
the SNR is from data on the SFR, via Eq. (2.2). The cosmic star formation history as a

– 3 –


