On the DM annual modulation signal (in collaboration with Thomas Schwetz and Jure Zupan) [JCAP 03 (2012) 005, 1112.1627; PRL 109 (2012) 141301, 1205.0134]

J. Herrero - García

IFIC, Universidad de Valencia - CSIC

Invisibles Journal Club

30th October 2012

Outline

- Evidence and properties of dark matter
- 2 Annual modulation in direct searches
- Bounds on the annual modulation and results
- Bounds between different experiments and results
- Final remarks and conclusions

J. Herrero - García On the DM annual modulation signal 30th October 2012 2/55

EVIDENCE AND PROPERTIES OF DARK MATTER

J. Herrero - García On the DM annual modulation signal 30th October 2012 3/55

Evidence for dark matter

1. Rotation curves

2. Bullet cluster (X-rays + gravitational lensing)

J. Herrero - García On the DM annual modulation signal 30th October 2012 4/55

More evidence...

3. Concordance Model: cosmology + CMB ($\Omega_{TOTAL} = 1$) + SNIA ($\Omega_{DE} = 0.73$) + BBN ($\Omega_B = 0.04$) $\longrightarrow \Omega_{DM} = 0.23$.

- 4. M/L ratio in galaxy clusters (virial theorem to gas).
- 5. Anisotropies of the CMB.
- 6. Growth of structure (verified by N-body simulations).
- 7. Globular clusters... etc.

J. Herrero - García On the DM annual modulation signal 30th October 2012 5/55

Properties of a DM particle (or particles)

It interacts gravitationally.

- It has to be present today with the observed abundance (long-lived or stable).
- It is *Invisible:* electrically neutral and colourless (no e.m./ strong at tree level).
- It may act weakly $(SU(2)_L$ or with an unknown "weak" int.).
- It is cold (or warm), otherwise would have free-streamed erasing small scales.
- It is collisionless: it does not dissipate, it forms haloes.

J. Herrero - García On the DM annual modulation signal 30th October 2012 6/55

ANNUAL MODULATION IN DIRECT SEARCHES

J. Herrero - García On the DM annual modulation signal 30th October 2012 7/55

Direct detection

• IF DM interacts weakly, it can produce nuclear recoils.

- Extremely difficult experiments.
- Output to reduce background.
- Energy deposited via ionization, heat &/or light.

J. Herrero - García On the DM annual modulation signal 30th October 2012 8/55

Annual modulation in direct searches

 Depending on the time of the year, we should receive more or less DM flux scattering in our detectors.

- Nice DM signature, as backgrounds (radioactivity) are not expected to show this time dependence.
- Typical velocities involved (apart from $v_{esc} \simeq 550$ km/s):

 $\bar{v} \simeq v_{Sun} \approx 220 \text{ km/s } \& v_e(t) \propto v_e \cos 2\pi (t - t_0) [v_e \simeq 30 \text{ km/s}].$ J. Herrero - García *On the DM annual modulation signal* 30th October 2012 9/55

Direct detection event rate: notation

Local DM density:

 $ho_{\chi} = n_{\chi} m_{\chi} pprox 0.3 \, {
m GeV/cm^3}$

Flux (# particles/ area/ time):

$$\phi_{\chi} = \textit{n}_{\chi}\textit{v} = \left(rac{100\,\mathrm{GeV}}{\textit{m}_{\chi}}
ight)\,10^{5}\mathrm{cm}^{-2}\mathrm{s}^{-1}$$

Hand - waving rate (# counts/ time):

$$\boldsymbol{R} = \phi_{\chi} \, \sigma_{\chi} \, \boldsymbol{N}_{target} = \frac{\rho_{\chi} \boldsymbol{v}}{m_{\chi}} \cdot \sigma_{\chi} \cdot \frac{\text{target mass}}{m_{A}}$$

Differential event rate (
 counts/ keV/ kg/ day):

$$R(E_r, t) = \frac{\rho_{\chi}}{m_{\chi}m_A} \int_{v_m} d^3 v \, \frac{d\sigma_{\chi}}{dE_r} v \, f_{det}(\vec{v}, t)$$

where $v_m = \sqrt{m_A E_r / 2\mu_{\chi A}^2}$ is the minimum velocity (for elastic scattering) to produce a recoil of energy E_r (kinematics). J. Herrero - García *On the DM annual modulation signal* 30th October 2012 10/55

Event rate final: simple expression

- The velocity distribution fulfills $(\int d^3 v f_{det}(\vec{v}, t) = 1)$: $f_{det}(\vec{v}, t) = f_{Sup}(\vec{v} + \vec{v_e}(t)) = f_{aal}(\vec{v} + \vec{v_S} + \vec{v_e}(t)) \ge 0.$
- The final rate can be simplified as $(C \equiv \rho_{\chi} \sigma_A^0/2m_{\chi} \mu_{\chi A}^2)$: $R(E_r, t) \equiv C F^2(E_r) \eta(v_m, t),$

with:

$$\eta(\mathbf{v}_m,t)\equiv\int_{\mathbf{v}_m}d^3\mathbf{v}\,rac{f_{det}(ec{\mathbf{v}},t)}{\mathbf{v}}.$$

• We have used for spin-independent (SI):

$$\frac{d\sigma_{\chi}}{dE_r} = \frac{m_A}{2\mu_{\chi A}^2 v^2} F^2(E_r) \sigma_A^0$$

where $\sigma_A^0 = \sigma_p [Z + (A - Z)(f_n/f_p)]^2 \mu_{\chi A}^2 / \mu_{\chi p}^2$.

J. Herrero - García On the DM annual modulation signal 30th October 2012 11/55

Typical speed distributions f(v) and $\eta(v_m)$

Typical SHM - isothermal sphere with isotropic, Maxwellian f(v) in the galactic frame (motivated at low velocities, with DM in equilibrium giving rise to a smooth halo):

 $\overline{f^{gal}_{SHM}}(ec{v}) \propto e^{-ec{v}^2/ec{v}^2}$

• Therefore, spectrum is exponential (even in the lab. frame): $R \sim e^{-E_r/E_0}$ with $E_0 \sim O(10 \text{ KeV})$

There can be unvirialized components at high v (N-body sim.):
<u>1. Streams</u> - DM stripped from infalling substructures with

small velocity dispersion, has not had time to spatially mix:

$$f^{gal}_{STREAM}(ec{ extbf{v}}) \propto \delta^3(ec{ extbf{v}} - ec{ extbf{v}}_{stream})$$

 2. Debris flows - spatially homogeneous velocity substr. from overlapping shells of subhaloes falling into the M.W.:

 $f_{FLOW}^{gal}(ec{v}) \propto \delta(ec{ec{v}} - ec{v}_{ ext{flow}})$,

J. Herrero - García On the DM annual modulation signal 30th October 2012 12/55

f(v) and $\eta(v_m)$ (next figures from Freese et al.)

J. Herrero - García On the DM annual modulation signal 30th October 2012 13/55

Typical rates and annual modulations

The amplitude of the modulation is (for SHM):

 $A_R(E_r) \approx \frac{1}{2} [R(E_r, \text{June}) - R(E_r, \text{December})]$

J. Herrero - García On the DM annual modulation signal 30th October 2012 14/55

Modulation / rate versus time

J. Herrero - García On the DM annual modulation signal 30th October 2012 15/55

Modulation features of SHM and streams

- SHM: sinusoidal, phase in June, O(10%) modulation (except for large v_{min}), phase reversal at v_{min} ≈ 200 km/s.
- At large *v_m*, modulation fraction grows, but normally detectors not sensitive, except for low enough *m_χ*.
- The E_R at which the modulation changes phase constrains m_{χ} (only a lower limit on m_{χ} can be set, as, for large m_{χ} , E_R approaches a fixed value).
- Streams: modulation significant for v_m ≈ v_{stream}, below is small and above it is negligible, like the rate. Possibly non-sinusoidal. Phase can vary.

J. Herrero - García On the DM annual modulation signal 30th October 2012 16/55

DAMA's and CoGENT's annual modulation

• DAMA (Nal): 8.9 σ , consistent with SHM phase at June 1.

 \rightarrow Fits typical modulation cosine function, with T = 1 year. \rightarrow Two possible solutions:

 $m_{\chi} \sim$ 10 GeV (Na) and $m_{\chi} \sim$ 80 GeV (*I*)

• CoGeNT (Ge): 2.8 σ , best fit phase at April 16.

 \rightarrow Possible solution $m_{\chi} \sim 10$ GeV.

J. Herrero - García On the DM annual modulation signal 30th October 2012 17/55

DAMA and CoGENT versus other experiments (Kopp)

- Discrepancy between DAMA and CDMS, XENON...
- XENON: most stringent constraint on σ_{SI} for $m_{\chi} > 10$ GeV.
- $m_{\chi} \sim$ 80 GeV (I) DAMA solution seems to be ruled-out for SI and SD by XENON, CDMS, COUPP.
- However it assumes a particular velocity distribution (SHM), local density and escape velocity (550 km/s).

J. Herrero - García On the DM annual modulation signal 30th October 2012 18/55

BOUNDS ON THE ANNUAL MODULATION AND RESULTS

[JCAP 03 (2012) 005, 1112.1627]

J. Herrero - García On the DM annual modulation signal 30th October 2012 19/55

Our goal: is the annual modulation seen due to DM?

- Observed modulation fraction \equiv modulation/constant rate:
- \rightarrow ~ 0.02 (DAMA), ~ 0.1 0.3 (CoGeNT).
 - First part: establish a consistency check between the modulated signal and the constant rate, that must be fulfilled within an experiment by dark matter, by making very mild assumptions about the DM halo. [JCAP03(2012)005, 1112.1627 [hep-ph]]
 - Second part: translate the bound on the rate of one experiment into a bound on the annual modulation in a different experiment. [PRL, 1205.0134 [hep-ph]]

J. Herrero - García On the DM annual modulation signal 30th October 2012 20/55

Expansion of $\eta(v_m, t)$ to first order

• For typical $E_r \sim 10$ KeV and for Na, I, Ge: $v > v_m \gg v_e$, so we can expand $\eta(v_m, t)$ to first order in $v_e/v \ll 1$:

$$\eta(\mathbf{v}_m,t) = \int_{\mathbf{v}_m} d^3 \mathbf{v} \, \frac{f_{det}(\vec{\mathbf{v}})}{\mathbf{v}} =$$

$$= \int_{v_m} d^3 v \, \frac{f_{Sun}(\vec{v})}{v} +$$

$$+\int d^3 v \, f_{Sun}(ec v) \, rac{ec v \cdot ec v_{ec e}(t)}{v^3} [\Theta(v-v_m) - \delta(v-v_m) \, v_m] \equiv$$

$$r\equiv ar\eta(m{v}_m)+m{A}_\eta(m{v}_m)\cos 2\pi(t-t_0)$$

• So the 1st term is just the constant part $\bar{\eta}(v_m)$ and the 2nd one is the modulated part. Can check experimentally for convergence by searching for higher order terms.

J. Herrero - García On the DM annual modulation signal 30th October 2012 21/55

Splitting the total rate

 So the total rate can be divided into a time-independent and a time-dependent part:

 $R(E_r, t) \equiv \overline{R}(E_r) + \delta R(\overline{E_r}, t) \equiv$ $\equiv C F^2(E_r) \eta(v_m, t) \equiv$

 $\equiv C \,\overline{F^2(E_r)} \, \left[\bar{\eta}(v_m) + A_{\eta}(v_m) \cos 2\pi (t - t_0) \right]$

We derive a relation between A_η and η
, and we translate it into observable quantities A_R and R
, with:

 $\overline{R} \equiv CF^2(E_r)\overline{\eta}(v_m)$ and $A_R \equiv CF^2(E_r)A_\eta$

J. Herrero - García On the DM annual modulation signal 30th October 2012 22/55

The general bound on the annual modulation

Assumptions:

- "Smooth" halo, i.e., spikes in v < 30 km/s not covered.
- Only time dependence comes from v_e(t). No explicit time dependence in f_{Sun} (no change on time-scales of months).
- **3** DM halo spatially constant at scale Sun-Earth (constant ρ).

$$oldsymbol{\mathcal{A}}_\eta(oldsymbol{v}_m)\leqslantoldsymbol{v}_e\left[-rac{dar{\eta}}{doldsymbol{v}_m}+rac{ar{\eta}(oldsymbol{v}_m)}{oldsymbol{v}_m}-\int_{oldsymbol{v}_m}doldsymbol{v}rac{ar{\eta}(oldsymbol{v})}{oldsymbol{v}^2}
ight]$$

Integrating it over v_m and dropping the negative term, we get:

$$\int_{vm1}^{vm2} dv_m \, A_\eta(v_m) \leqslant v_e \left[\bar{\eta}(v_{m1}) + v_{m1} \int_{v_{m1}} dv \, \frac{\bar{\eta}(v)}{v^2} \right]$$

 It allows an arbitrary halo structure, including several streams from different directions.

J. Herrero - García On the DM annual modulation signal 30th October 2012 23/55

Symmetric bounds

There is some preferred constant direction v_{HALO} (independent of v_m) governing the shape of the DM velocity distribution in the Sun's rest frame. We get (dropping a negative term):

$$\int_{\mathsf{vm1}}^{\mathsf{vm2}} d\mathsf{v}_m \, \mathsf{A}_\eta(\mathsf{v}_m) \leqslant \mathsf{v}_e \, \bar{\eta}(\mathsf{v}_{m1})$$

- It is fulfilled for isotropic halos (Maxwellian), tri-axial ones (up to peculiar velocity), streams parallel to the motion of the Sun like a dark disc... Phase constant (up to sign flip).
- In general, natural cases like the above ones have v
 _{HALO} aligned with v
 _{SUN}. Phase fixed at June 1st. We get:

 $\int_{vm1}^{vm2} dv_m A_\eta(v_m) \leqslant 0.5 v_e \,\bar{\eta}(v_{m1})$

J. Herrero - García On the DM annual modulation signal 30th October 2012 24/55

Checking the general bound for the Maxwellian halo

J. Herrero - García On the DM annual modulation signal 30th October 2012 25/55

Checking the symmetric bounds

J. Herrero - García On the DM annual modulation signal 30th October 2012 26/55

Applying the bounds to real data

- Experimental data is binned: We have to average over each bin and convert integrals to sums... etc.
- They vary depending on whether we have single-target detector (Ge in CoGeNT) or multi-target (Na & I in DAMA).
- The dependence on ρ_{χ} , σ_{p} , v_{esc} drops from the bounds.
- They depend on m_{χ} , $q(E_r)$ and $F^2(E_r)$.
- They are valid for SI, SD and IV.
- We also treat the case of an unknown background that contributes *only* to the constant rate (*NOT-modulated*).

J. Herrero - García On the DM annual modulation signal 30th October 2012 27/55

Results for DAMA

J. Herrero - García On the DM annual modulation signal 30th October 2012 28/55

Results for CoGeNT

J. Herrero - García On the DM annual modulation signal 30th October 2012 29/55

CoGeNT (with surface events subtracted)

J. Herrero - García On the DM annual modulation signal 30th October 2012 30/55

To study the consistency between A and R

Conservative approach: only a fraction ω_i (0 ≤ ω_i ≤ 1) of *R_i* is due to DM, the rest being an unknown background.
 Build a "χ²-like" function:

$$\Delta X^2 = \sum_{i}^{N} \left(rac{A_i - B_i}{\sigma_i^A}
ight)^2 \Theta(A_i - B_i)$$

and minimize w.r.t the ω_i .

- There is only a contribution to it when the bound is violated.
- Approximately χ^2 distributed with 1 d.o.f., m_{χ} .

J. Herrero - García On the DM annual modulation signal 30th October 2012 31/55

X^2 for CoGeNT (with & without surface events subtr.)

J. Herrero - García On the DM annual modulation signal 30th October 2012 32/55

Probability that the bound is fulfilled

• If surface events are confirmed, under ass. 2 (2a) data is inconsistent with any m_{χ} at \gtrsim 97% (\gtrsim 90% C.L.) resp.

J. Herrero - García On the DM annual modulation signal 30th October 2012 33/55

- We have applied our bounds to DAMA and CoGeNT (elastic, SI):
- DAMA annual modulation is consistent with its rate.
- 2 Very strong tensions exist for CoGeNT, with typical DM haloes excluded at \gtrsim 90% C.L.

J. Herrero - García On the DM annual modulation signal 30th October 2012 34/55

BOUNDS BETWEEN DIFFERENT EXPERIMENTS AND RESULTS

[PRL 109 (2012) 141301, 1205.0134]

J. Herrero - García On the DM annual modulation signal 30th October 2012 35/55

The bounds are detector independent!

The quantity

$$ilde{\eta}(\mathbf{v}_m) \equiv \tilde{C} \, ar{\eta}(\mathbf{v}_m), \quad ext{ with } \quad \tilde{C} \equiv rac{
ho_\chi \sigma_p}{2 m_\chi \mu_{\chi p}^2},$$

is detector independent (Fox et al.).

- The same happens to $\tilde{A}(v_m) \equiv \tilde{C} A(v_m)$.
- So the bounds apply to η̃ and Ã, even if the l.h.s. and r.h.s. of the bounds refer to different experiments!
- So we can have bounds that look like:

 $\int_{vm1}^{vm2} dv_m \, \tilde{A}_{\eta}^{DAMA}(v_m) \leqslant v_e \, \tilde{\eta}^{XENON}(v_{m1})$

J. Herrero - García On the DM annual modulation signal 30th October 2012 36/55

Upper bounds on $\tilde{\eta}(v_m)$ for null-result experiments

• The predicted number of events in an interval $[E_1, E_2]$ is: $N_{[E_1, E_2]}^{pred} = MTA^2 \int_{0}^{\infty} dE_{nr} F_A^2(E_{nr}) G_{[E_1, E_2]}(E_{nr}) \tilde{\eta}(v_m)$

with G the detector response, M the mass and T the exp. time.

As η̃(v_m) is a falling function, the minimum number of events is obtained for η̃(v) ≡ η̃(v_m)Θ(v_m - v). So, for a given v_m, there is a lower bound N^{pred}_[E1, E2] ≥ μ(v_m), with

$$\mu(\mathbf{v}_m) = MTA^2 \tilde{\eta}(\mathbf{v}_m) \int_{0}^{E(\mathbf{v}_m)} dE_{nr} F_A^2(E_{nr}) G_{[E_1, E_2]}(E_{nr})$$

• So we can obtain an upper bound of $\tilde{\eta}(v_m)$ at a given C.L. by requiring that the probability of obtaining $N_{[E_1,E_2]}^{obs}$ events or less for a Poisson mean of $\mu(v_m)$ is equal to 1-C.L.

J. Herrero - García On the DM annual modulation signal 30th October 2012 37/55

• By assuming scattering on Na (for low mass DM particles), \tilde{A}_{η}^{i} is related to the observed modulation in bin *i*, A_{R}^{i} , by:

$$ilde{\mathcal{A}}^{i}_{\eta}(\boldsymbol{v}^{i}_{m}) = rac{\mathcal{A}^{i}_{R}q_{Na}}{\mathcal{A}^{2}_{Na}\langle \mathcal{F}^{2}_{Na}
angle_{i}f_{Na}}$$

where $q_{Na} = 0.3$ is the Na quenching factor, $F_{Na}(E_r)$ is the Na form factor and $f_{Na} = m_{Na}/(m_{Na} + m_I)$ is the Na mass fraction.

J. Herrero - García On the DM annual modulation signal 30th October 2012 38/55

Modulations and upper bounds on the rates

J. Herrero - García On the DM annual modulation signal 30th October 2012 39/55

General bound, spin independent

J. Herrero - García On the DM annual modulation signal 30th October 2012 40/55

Spin dependent

J. Herrero - García On the DM annual modulation signal 30th October 2012 41/55

Isospin violation

J. Herrero - García On the DM annual modulation signal 30th October 2012 42/55

Quantifying DAMA's modulation discrepancy

- We fix v_m (or m_χ). For each η̃(v_m) there is a Poisson mean μ(v_m). We calculate the probability p_η to obtain equal or less events than measured by the null-result experiment.
- We construct the bound (r.h.s.) using the same $\tilde{\eta}(v_m)$.
- We calculate the probability p_A that the bound is not violated by assuming on the l.h.s of the bounds a Gaussian distribution for the modulation in each bin.
- Then p_{joint} = p_η p_A is the combined probability of obtaining the experimental result for that η̃. Then we maximize it w.r.t. η̃ to obtain the highest joint probability.

J. Herrero - García On the DM annual modulation signal 30th October 2012 43/55

Probability of compatibility of DAMA's modulation with the other null-result experiments

m_χ ≤ 15 GeV, is disfavoured by ≥ 1 experiment at ≥ 4σ.
XE100 excludes at > 6σ for m_χ ≥ 8 GeV (SI).
C.L. depends on systematic uncertainties, such as q_{Na}.
J. Herrero - García On the DM annual modulation signal 30th October 2012 44/55

FINAL REMARKS AND CONCLUSIONS

J. Herrero - García On the DM annual modulation signal 30th October 2012 45/55

Final remarks and conclusions

 1) We have derived bounds (almost completely) astrophysics independent between the annual modulation signal and the constant rate.

 \longrightarrow DAMA was consistent, while CoGeNT's modulation was incompatible with its own rate at \gtrsim 90 % C.L.

 2) We have extended the bounds to the case of comparing between the modulation in one experiment and the null result of a different experiment.

 \rightarrow DAMA, for all interactions (elastic) and with a DM mass $m_{\chi} \lesssim$ 15 GeV, is disfavoured by \geq 1 experiment at \geq 4 σ .

The method will be an important test that any DM annually modulated signal will have to pass in the future.

J. Herrero - García On the DM annual modulation signal 30th October 2012 46/55

THANKS FOR YOUR ATTENTION!

J. Herrero - García On the DM annual modulation signal 30th October 2012 47/55

J. Herrero - García On the DM annual modulation signal 30th October 2012 48/55

CoGENT (without subtraction of surface events)

J. Herrero - García On the DM annual modulation signal 30th October 2012 49/55

Chi square minimization

J. Herrero - García On the DM annual modulation signal 30th October 2012 50/55

CoGENT bounds on the DM mass

	Proc. 1	Proc. 1	Proc. 2	Proc. 2
Mean mass (GeV)	Normal	Surface	Normal	Surface
General bound	8.5	10	7.3	10
Symmetric bound	24	43	18	37
Sym. $\alpha = \pi/6$	27.5	59.5	16	35

J. Herrero - García On the DM annual modulation signal 30th October 2012 51/55

Method 3:

- For each m_χ, compute the less constraining set of ω_i by minimizing the X².
- With this set of ω_i, suppose the bound is saturated (conservative) and simulate pseudo-data (for the modulation) taking the upper bounds (r.h.s.) as the mean value for a Gaussian, with σ_i = error of the true A_i.
- Solution For each random data set, calculate the X^2 value and obtain its distribution.
- Compare it with the X_{obs}^2 of the real data and calculate the probability of obtaining a $X^2 > X_{obs}^2$.

• Probability to obtain $X^2 > X_{obs}^2 \equiv P_{bound is fulfilled}$.

J. Herrero - García On the DM annual modulation signal 30th October 2012 52/55

SI: excluded at > 5σ for m_χ ≥ 10 GeV (general halo).
 SD a IV can achieve a consistency at ≈ 3σ (general halo).

J. Herrero - García On the DM annual modulation signal 30th October 2012 53/55

Iterative method

• **Method 4.** For each bin *i*, the inequality depends only on ω_j , with $j \ge i$. The most conservative option is to have ω_i (ω_i with j > i) as large (small) as possible.

Iterative prescription to find the set of ω_i corresponding to the most conservative choice of background:

- Saturate the bounds ($\leq \rightarrow =$). System of *N* (\sharp bins) linear equations in ω_i .
- Starting with the highest bin j = N, solve for the ω_N that saturates the bound. If $\omega_N \le 1$, it will be the smallest allowed value, so the bound for N 1 will be the weakest. If $\omega_N \ge 1$, i it is violated & we set it to one.
- Solution Then go to the bin j = N 1 with that value of ω_N and look for the ω_{N-1} that saturates the bound, and so on...

J. Herrero - García On the DM annual modulation signal 30th October 2012 54/55

Iterative method bounds

	Proc. 4	Proc. 4	
Mean mass (GeV)	Normal	Surface	
General bound	10	12.5	
Symmetric bound	29.5	63	
Sym. $\alpha = \pi/6$	37.5	94.5	

J. Herrero - García On the DM annual modulation signal 30th October 2012 55/55