PEV NEUTRINOS FROM THE PROPAGATION OF ULTRA-HIGH ENERGY COSMIC RAYS

Esteban Roulet CONICET, Bariloche, Argentina

THE ENERGETIC UNIVERSE

multi-messenger astronomy

DIFFUSE PHOTON BACKGROUND

THE NEUTRINO SKY

COSMIC RAY SPECTRUM

Power law flux → stochastic (Fermi) acceleration in shocks

Small fractional energy gain after each shock crossing \rightarrow

 $\frac{dN}{dE} \sim E^{-\alpha} \quad with \; \alpha \simeq 2 - 2.4$

TYPES OF COSMIC RAY DETECTORS

Examples of powerful astrophysical Objects/potential CR accelerators

SNR

Radio Galaxy

Colliding

galaxies

Pulsar

GRB

Diffuse emission

TeV γ Astrophysical Sources

Discriminating leptonic vs. hadronic scenarios (a way to know if protons are indeed accelerated in SNR)

Brems: $e + gas \rightarrow \gamma + ...$ **Synch**: $e + Bfield \rightarrow e + Xray$ **IC**: $e + Xray \rightarrow \gamma + e$ **Hadronic:** $CR + \gamma(p) \rightarrow \pi + X$ $\pi^0 \rightarrow \gamma \gamma$, $\pi^- \rightarrow e + \overline{\nu}_e + \nu_\mu + \overline{\nu}_\mu$

E [eV]

10 14

Often inconclusive, observation of neutrinos would be unambiguous!

FERMI found 2 SN remnants with clear signals of gammas from pion decays (low E supp.) Proton acceleration in SuperNovae to beyond 10 TeV proved, associated v flux expected 2013, Science, 339, 807

Distant γ sources are strongly attenuated by background photons (starlight, CMB, radio, ...): $\gamma \gamma \rightarrow e^+ e^-$

Can even measure IR background from observed attenuation

beyond few TeV, high redshift Universe is unobservable with photons

Photons produce deep showers nuclei of mass A behave as p with with E/A \rightarrow shallower showers

the Greisen-Zatsepin-Kuzmin effect (1966)

AT THE HIGHEST ENERGIES, PROTONS LOOSE ENERGY BY INTERACTIONS WITH THE CMB BACKGROUND

PROTONS CAN NOT ARRIVE WITH E > 6x10¹⁹ eV FROM D > 200 Mpc

 $(\pi^{0} \text{ produce GZK photons})$ $(\pi^{\pm} \text{produce cosmogenic neutrinos})$ (Berezinsky & Zatsepin 69)

For Fe nuclei: after ~ 200 Mpc the leading fragment has E < 6x10¹⁹ eV

ligther nuclei get disintegrated on shorter distances

(fewer neutrinos produced)

E [EeV]

Attenuation lengths vs E

- dip models lead to significant cascade fluxes from pair production

- ankle models (harder fluxes) lead to larger GZK photon fluxes

AUGER SD photon bound

photon showers are quite penetrating (small curvature radius) and lack muons (electromagnetic signal in detectors have long rise times) \rightarrow essentially no UHE photon candidates observed

excludes most top-down models, but still above optimistic GZK photons

COSMOGENIC NEUTRINO FLUXES:

- ankle models (harder fluxes) lead to larger cosmogenic neutrino fluxes than dip models

- fluxes at EeV could be comparable to CR fluxes, but cross section tiny (~ 10 nb) \rightarrow probability of interacting in atmosphere small (~10⁻⁵ for vertical)

Neutrino detection in AUGER

Only neutrinos can produce young horizontal showers

For downgoing showers: (assuming 1:1:1 flavor ratios) 38% from v_e , 18% from v_{μ} , 29% from v_{τ} – air, 15% from v_{τ} – mountain but Earth-skimming v_{τ} searches are more sensitive

Fargion 2000, Bertou et al '01 Feng et al. '02

Up-going Earth-skimming v_{τ} showers

 $\sigma_{CC} \simeq 10^{-32} \, cm^2 \, E^{0.36} \qquad (E \, [EeV])$

Probability of interacting in the last 10 km ~ 0.01

→ Effective exposure ~ 0.1 km² sr (c.f. ~ 10^4 km² sr for UHECR)

AUGER BOUNDS ON DIFFUSE NEUTRINO FLUX

unlike hadronic CRs, neutrinos can produce young horizontal showers above the detector (in particular from upcoming near horizontal tau lepton induced showers)

Horizontal young showers?

ZERO CANDIDATES

0 events observed \rightarrow bounds scale linearly with exposure

NEUTRINO TELESCOPES (10 GeV to PeV and beyond)

km³ detector at South Pole, completed by 2011, looking at northern v sky (and to southern sky above PeV)

Deep inelastic Neutrino nucleon interactions

Earth opaque for E>40 TeV→ Need to look above horizon

One may even distinguish neutrino flavors

muon neutrino (track)

electron neutrino (cascade, also from NC)

tau neutrino (double bang)

(a)

(b)

No point sources observed by Icecube nor Antares

Targeted searches (galactic and extra-galactic candidates): SNR, AGN,...

ICECUBE stacked search for neutrinos coincident with observed GRB 2008/2010

Bound factor 4 below standard predictions \rightarrow GRB are not main source of UHECRs or production models need revision

BOUNDS ON DIFFUSE NEUTRINO FLUXES

High energy atmospheric neutrinos

decay length $L = \gamma c \tau$ $L_{\pi} \simeq 6 \ km (E_{\pi} / 100 \ GeV)$ $L_{K} \simeq 7.5 \ km (E_{K} / TeV)$ $L_{D} \simeq 2 \ km (E_{D} / 10 \ PeV)$

Atmospheric vs mainly from pion decays at low energies,

but above 100 GeV pions are stopped before decay \rightarrow kaons become the main source,

but above ~100 TeV prompt charm decays dominate

FIG. 5: Prompt and conventional $\nu_{\mu} + \bar{\nu}_{\mu}$ fluxes in the vertical

sample gluon density distribution at $x_2 \simeq \frac{M_{cc}}{2x_F}$ $\rightarrow x_2 < 10^{-5}$ for E >10¹⁵ eV need to extrapolate from measured values

also requires to include NLO processes

The two highest energy neutrino events observed by ICECUBE

Recently 26 additional events found above ~ 20 TeV

(Science 2013)

Distribution in E and declination compatible with isotropic E⁻² flux with cutoff

Cosmogenic neutrinos from proton sources:

Threshold: $p \gamma \rightarrow \pi^+ n$ $s = (p_{p} + p_{\gamma})^{2} > (m_{p} + m_{\pi})^{2} \Rightarrow E_{p} > \frac{m_{\pi}(2m_{p} + m_{\pi})}{4E_{\gamma}} \simeq \frac{70 \ EeV}{E \ /10^{-3} eV}$

 \rightarrow 10²⁰ eV for CMB photons, 10¹⁷ eV for optical photons

Redshift (production at 0 < z < 4): $T_{CMB} = (1+z) 2.7 \text{ K} \rightarrow \text{redshifted threshold}$

Redshifted v energy $E_{v}^{\pi-dec} \simeq \frac{E_{p}}{20(1+z)}$

 $E_{\nu}^{\pi-dec} \simeq \frac{5 \, EeV}{(1+z)(E_{\gamma}/10^{-3} \, eV)} \qquad \qquad \text{EeV } \nu \text{ from interactions with CMB photons} \\ \text{PeV } \nu \text{ from interactions with UV/O/IR photons} \\ \text{PeV } \nu \text{ from interactions with UV/O/IR photons} \\ \text{PeV } \nu \text{ from interactions with UV/O/IR photons} \\ \text{PeV } \nu \text{ from interactions with UV/O/IR photons} \\ \text{PeV } \nu \text{ from interactions with UV/O/IR photons} \\ \text{PeV } \nu \text{ from interactions with UV/O/IR photons} \\ \text{PeV } \nu \text{ from interactions with UV/O/IR photons} \\ \text{PeV } \nu \text{ from interactions with UV/O/IR photons} \\ \text{PeV } \nu \text{ from interactions with UV/O/IR photons} \\ \text{PeV } \nu \text{ from interactions with UV/O/IR photons} \\ \text{PeV } \nu \text{ from interactions with UV/O/IR photons} \\ \text{PeV } \nu \text{ from interactions with UV/O/IR photons} \\ \text{PeV } \nu \text{ from interactions with UV/O/IR photons} \\ \text{PeV } \nu \text{ from interactions with UV/O/IR photons} \\ \text{PeV } \nu \text{ from interactions with UV/O/IR photons} \\ \text{PeV } \nu \text{ from interactions with UV/O/IR photons} \\ \text{PeV } \nu \text{ from interactions with UV/O/IR photons} \\ \text{PeV } \nu \text{ from interactions with UV/O/IR photons} \\ \text{PeV } \nu \text{ from interactions with UV/O/IR photons} \\ \text{PeV } \nu \text{ from interactions with UV/O/IR photons} \\ \text{PeV } \nu \text{ from interactions with UV/O/IR photons} \\ \text{PeV } \nu \text{ from interactions with UV/O/IR photons} \\ \text{PeV } \nu \text{ from interactions with UV/O/IR photons} \\ \text{PeV } \nu \text{ from interactions with UV/O/IR photons} \\ \text{PeV } \nu \text{ from interactions with UV/O/IR photons} \\ \text{PeV } \nu \text{ from interactions with UV/O/IR photons} \\ \text{PeV } \nu \text{ from interactions with UV/O/IR photons} \\ \text{PeV } \nu \text{ from interactions with UV/O/IR photons} \\ \text{PeV } \nu \text{ from interactions with UV/O/IR photons} \\ \text{PeV } \nu \text{ from interactions with UV/O/IR photons} \\ \text{PeV } \nu \text{ from interactions with UV/O/IR photons} \\ \text{PeV } \nu \text{ from interactions with UV/O/IR photons} \\ \text{PeV } \nu \text{ from interactions with UV/O/IR photons} \\ \text{PeV } \nu \text{ from interactions with UV/O/IR photons} \\ \text{PeV } \nu \text{ from interactions with UV/O/IR photons} \\ \text{PeV } \nu$

or PeV v from n-decays from interactions with CMB?

Height of PeV v peak from n-decay related to height of EeV v peak from π -decay

$$\frac{d \Phi_{\bar{\mathbf{v}}_e}}{d \log E} \left(E_{\nu}^{n-decay} \right) \simeq \frac{d \Phi_{\nu_{\mu}}}{d \log E} \left(E_{\nu}^{\pi-decay} \right) \Rightarrow \left[E_{\nu}^2 \frac{d \Phi_{\bar{\mathbf{v}}_e}}{d E} \right]_{E_{\nu}=610^{15} eV}^{n-dec} \simeq \frac{E_{\bar{\nu}_e}^{n-d}}{E_{\nu}^{\pi-d}} \left[E_{\nu}^2 \frac{d \Phi_{\nu_{\mu}}}{d E} \right]_{E_{\nu}=10^{18} eV}^{\pi-dec}$$

\mathbf{v} and γ for different source evolutions & cascade bound

proton sources, Emax=200 EeV

Allowed height of EeV ν flux implies bound on PeV ν peak from n-decay

$$\left[E_{\nu}^{2} \frac{d \Phi_{all\nu}}{d E}\right]_{E_{\nu}=10^{18} eV} < 5 \times 10^{-8} \frac{GeV}{cm^{2} s sr} \Rightarrow \left[E_{\nu}^{2} \frac{d \Phi_{\bar{\nu}_{e}}}{d E}\right]_{E_{\nu}=610^{15} eV}^{n-dec} < 10^{-10} \frac{GeV}{cm^{2} s sr}$$

 $\rightarrow V_e$ flux from n-decay tiny at PeV

Cosmogenic neutrinos from nuclei:

photo-disintegration: $A \gamma \rightarrow A' + nucleons$ Giant dipole resonance for E'_{γ} ~ 10-30 MeV $A' \rightarrow Ae \overline{\nu}_e$ $n \rightarrow pe \overline{\nu}_e$ $\pi^+ \rightarrow e^+ \overline{\nu}_\mu \nu_\mu \nu_e$ **Threshold:**

$$s = (p_A + p_\gamma)^2 > (m_A + 10 \, MeV)^2 \Rightarrow E_A > \frac{A}{56} \frac{2 \times 10^{20} \, eV}{E_\gamma / 10^{-3} \, eV}$$

For Fe, similar cutoff as p

lighter nuclei \rightarrow smaller cutoffs

Photo-pion: $A \gamma \rightarrow A' + \pi$ (need to account for nuclear suppression)

For E/A > 10¹⁷ eV, nuclei disintegrate 'a lot' (from IR & CMB) \rightarrow low energy neutrinos from n-decays (& beta decay) $E_v \simeq 4 \times 10^{-4} E/A$

Secondary nucleons with E/A interact producing pions

for E/A < 10¹⁷ eV interaction probabilities small → few nuclei disintegrate, fewer nuclei emit pions, but those may still dominate PeV neutrino flux production

PeV v from n-decays bounded by EeV neutrons, which are bounded by overall CR fluxes

$$\left[\frac{d\Phi_{\bar{v}_{e}}}{d\log E}\right]_{E_{v}=10^{15}eV}^{n-dec} \simeq \left[\frac{d\Phi_{n'}}{d\log E}\right]_{E=210^{18}eV} < \left[\frac{1}{2}\frac{d\Phi_{CR}}{d\log E}\right]_{E=210^{18}eV} \Rightarrow \left[E_{v}^{2}\frac{d\Phi_{\bar{v}_{e}}}{dE}\right]_{E_{v}=10^{15}eV}^{n-dec} < 10^{-11}\frac{GeV}{cm^{2}ssr}$$

Fe sources, α =2.0, E_{max}=5200 EeV, GRB2

Mixed extragalactic p / Fe composition with low cutoff ($E_n < 4 \text{ EeV}$)

p component below ankle leads to significant PeV ν fluxes from π -decay no EeV ν due to low cutoff

Flavor oscillations

Incoherent flavor conversions

(Pakvasa et al 2008)

$$P_{\alpha\beta} = \sum_{i} |U_{\alpha i}|^{2} |U_{\beta i}|^{2}$$

 $\pi\text{-decays:} \quad (\mathbf{v}_{e}:\mathbf{v}_{\mu}:\mathbf{v}_{\tau}) = (1:1:0) \rightarrow (0.78:0.61:0.61) \quad (\text{adopting TBM}) \\ (\bar{\mathbf{v}}_{e}:\bar{\mathbf{v}}_{\mu}:\bar{\mathbf{v}}_{\tau}) = (0:1:0) \rightarrow (0.22:0.39:0.39) \quad \sin^{2}\Theta_{23} \simeq 1/2 \\ \sin^{2}\Theta_{12} \simeq 1/3 \\ \sin^{2}\Theta_{12} \simeq 1/3 \\ \sin^{2}\Theta_{13} \simeq 0 \\ (\bar{\mathbf{v}}_{e}:\bar{\mathbf{v}}_{\mu}:\bar{\mathbf{v}}_{\tau}) = (1:0:0) \rightarrow (0.56:0.22:0.22) \quad \sin^{2}\Theta_{13} \simeq 0$

THE GLASHOW RESONANCE

$$\overline{v}_e e \rightarrow W \rightarrow \overline{f} f f'$$

resonant for:

$$E = \frac{M_W^2}{2m_e} = 6.3 \, PeV$$

at the peak,

$$\sigma(\bar{\mathbf{v}}_e e \rightarrow all) \simeq 350 \,\sigma^{CC}(\mathbf{v}_i N \rightarrow l_i X)$$

but peak narrow (0.17 PeV), electron antineutrino flavor not dominant, $n_e/n_N = 5/9$

- → overall contribution to the IceCube rates of v from π -decays is similar to the CC+NC ones within 2.5 PeV of the resonance
- \rightarrow does not allow to achieve strong enhancements

PeV neutrinos of Galactic origin?

Correlated with Fermi diffuse gammas? produced by interaction with gas in galactic arms?

IG. 1: IceCube count map in the energy range above 30 TeV (from Ref. 2). Overlayed are contours from the Fermi/LAT punt map in the energy range above 500 GeV, smoothed with a 10 degrees Gaussian. The regions of excess γ -ray flux along ne Galactic Plane are marked by their names.

Correlated with Fermi Bubbles?

FIG. 1: IceCube neutrino events in Galactic coordinates. The 21 shower-like events are shown with 15° error circles around the approximate positions (small white points) reported by IceCube [1]. The 7 track-like events are shown as larger red points. Also shown are the boundaries of the Fermi bubbles (dot-dashed line) and the Equatorial plane (dashed line).

But: Composition becoming heavy above the knee, individual sources too faint, Bounds from CASA-MIA on 100 TeV gammas, ...

PeV neutrinos of extra-Galactic origin?

Sources could be AGN, GRBs,

Need about 10% of energy in few x10¹⁶ CRs to go to pions

Optical photons at or around the source could be the target

Sources need not be too far away (unlike for cosmogenic nus)

Is there a gap between 300 TeV and 1 PeV ?

PeV neutrinos from dark matter decay?

Need more data to test spectrum, cutoff, tracks/showers, arrival directions, IceCube will soon provide that

CONCLUSIONS

Detection of 2 PeV v produced a revolution in the field of v astronomy

- are they atmospheric ? (enhanced by charm production)
- are they cosmogenic ? (produced during propagation of CRs)

Significant PeV v fluxes can arise from $10^{16} - 10^{17}$ eV protons producing π in interactions with UV/IR (but probably not enough)

Cosmogenic neutrinos from n-decays tiny at PeV energies

Glashow resonance has moderate impact (narrow width, only anti-v)

- are they Galactic ? Produced by CR interaction with ISM
- are they produced at the sources ? (GRB, AGN, ...)

We are at the dawn of the era of high energy neutrino astronomy